Chapter 1

TABLE OF CONTENTS

INTRODUCTION 4+ « + ¢« o s ¢ « o o

Features e s s s e e e s e e e
System Description
VIC Description . . « « « & « + &
VIC Theory of Control

SYNC and BLANKING . . « « + « =« =«

BUS STRUCTURE . « &« & o« « o « o =

Address BUS + ¢ o « o s o o o o

Data Bus - - L) - . - - - - - - - L

System Memory Map

.
.
.
L3
.
*
.
.

VIC Memory Map .« « ¢« « o « ¢ o o

PIC Memory Map . « « « « o « o« « &

Synchronization of Microprocessor to

VIC FUNCTIONS . ¢ ¢ « o o« & o o

‘Vertical Sync Control Register . .

Vertical Blanking Control Register

RDY Line Control s e e e e e e .

Horizontal Counter Resets

-

Page

23
29

30

33
35
37
38
41

43

45

46
48
52
57

TABLE OF CONTENTS

{(continued)

Object and Projectible Size and Repeats . .
Color Control Registers .« ¢ « v v o o o« o o
Border Size and Foreground Control Registers
Object Scan Direction Control Registers . .
Foreground Font Registers . . + « +« « « « .
Sound Selection Registers . .« « o ¢ o « « &
Sound Frequency Selection Registers
Sound Output Level Registers . . . « « .« .« .
Object Font Registers . . ¢« 4 v o o« « « o« &
Projectible Enable Registers . . . « « . . .
Border Enable Registers . . ¢« ¢« & &« ¢« « o .
Horizontal Movement Control Registers . . .
Object Font Register Selects
Border Enable Select Register
Projectible Tracking and Disable Registers .
Horizontal Movement Enable Control
Horizontal Movement Register Reset

Object Coincidence Register Reset

Coincidence and Input Registers

ii

73
75
78
80
82
83
84
86
90
92
93
98
100
101

103

TABLE OF CONTENTS

{(continued)

Page

Chapter 4 CONTROLLERS .« + « « « « « o« o« « « o« o = « « « . 106

4.0 System I/0 ¢ ¢ v v v v e e e e s e e e e e e e s 106
4.1 Joystick Controllers . « « « « « o o o o « o o 110
4.2 Paddle Controllers . + o o ¢ o ¢ o « ¢ o o + o 114

4.3 Keyboard Controllers . . « « « o & o o o « o o =« 116

4.4 Steering Controllers « « « « &+ o « o o o o« o o = 119

4.5 Front Panel Control Switches . « « « « o« ¢ « o« 122

Chapter 5 PROGRAMMING . + & & o o o o o o o o o & o o o o« 124

iii

INTRODUCTION

The Atari Video Interface Circuit (VIC) is controlled by a
Microprocessor (MPU) through a series of instructions contained in
a computer program. The program is stored in a Read Only Memory
(ROM) and is executed according to a set of predefined algorithms
and flowcharts developed by the programmer. The MPU also requires
some Random Access Memory (RAM) in order to execute the program
and to store temporary results of the various routines executed.
Also required is a Peripheral Interface Circuit (PIC) to communi-
cate with the external controls (i.e., switches, potentiometers,

etc.).

The VIC is an object-oriented device in that it will directly
generate an object which can be moved under the control of the.
MPU. The object is not generated through the use of screen RAM,
but rather from an object generator to which we supply the object
shape (font) as needed for the generation of the object on the
video screen. The object has 8 Bits of Horizontal Font Data. The
horizontal placement of the object is made by the VIC. However,
we can move the object left or right from the position by
controlling the Movement section of the VIC. Vertical positioning
is under the direct control of the MPU. The Objects can be
programmed to three different Horizontal sizes and can be repeated

one or two times after the original Object.

The VIC generates a non-universal object called a Projectile.
The Projectiles can be programmed to only 4 different Horizontal
sizes. The Projectiles have all of the motion capabilities of the
Objects. The Projectiles can also be programmed to repeat one oOr

two times after the original Projectile.

The VIC also controls a non-universal object generator called
the Border, which has all the motion capabilities of the Objects
and Projectiles, but which is like the Projectiles and does not
have the font capability of the Objects. The Border can only make
4 different shapes horizontally like the Projectiles versus 255
for an Object. The Border also cannot be repeated horizontally as

the Objects and Projectiles can.

The Foreground appears as a type of screen RAM on a one-line
basis, in that it cannot be moved horizontally and covers the

entire horizontal visible area of the video screen.

The Sound Section works under the control of the MPU to
generate complex sounds. The Sound section generates 10 different
sound wave shapes that are used as building blocks for complex
sounds. The MPU can control the frequency and amplitude for each

of the two Sound channels.

The Vic has a Concidence detection circuit which checks for
coincidence between each of the Objects, Projectiles, Border, and

Foreground.

There is also a set of Input circuits that can be used as
digital inputs and for performing an Analog to Digital conversion

for use with the Player controls.

The VIC has a Color Generator circuit that generates all of
the signals needed to produce a color picture on a standard NTSC

Color Television.

FEATURES

2 General Purpose Objects

3 Dedicated Objects

Object Duplication (2 Programmable Repeat Objects)
Object Size and Movement Under Microprocessor Control
Programmable Object Priority

280 nsec Object Resolution

Programmable Foreground

Programmable Foreground Repeat or Mirroring

128 Programmable Colors

Programmable Vertical Sync and Vetical Blanking Timing
é Programmable Sound Generators

4 Analog Potentiometer Inputs

2 Digital Inputs (Edge Sensitive Programmable)

4 Displayable Colors per Horizontal Scan Line

4 Chip Select Lines for Address Decoding

40 Pin Dual-In-Line Package

Page Zero Microprocessor Operation

SYSTEM DESCRIPTION

The Atari Video Interface Circuit (VIC) is designed for use
in a Microprocessor controlled Video Game System. It provides all
the game circuits on a single N-Channel MOS LSI Integrated
Circuit. Circuits are provided for both analog and digital plaver
inputs, Foreground, moving Objects, Projectiles, Border, and audio

signals.

The Microprocessor used in the system is the 6507. The ROMS
used are the 2316 (16K) or 2332 (32K). The PIC is a 6532. The

VIC is a custom circuit.

The game is Microprocessor controlled and each game
definition is stored as a program in the ROM. The ROM contains
the game rules, the score font, the object font, the background
font or algorithm, and the sound algorithms. Each ROM can contain
more than one game or variations of a game depending on game

complexity.

The VIC develops Composite Video with Color Burst according
to the NTSC video standard and uses a 3.579545 MHZ oscillator

frequency. The display is non-interlaced.

A block diagram of the system is shown in Figure 1. The
Microprocessor reads the stored program in the ROM and controls

the generation of the video output by the VIC.

The VIC generates the Horizontal Sync, Horizontal Blanking,
Color Burst, énd Video Signals which contain the Color and
Luminence signals. The Microprocessor Kkeeps track of the number
of horizontal lines scanned and controls the VIC to generate the
vertical Blanking and Sync. The VIC generates the sounds under
control of the Microprocessor, which can control the frequency,

shape, and amplitude.

The Microprocessor uses the PIC and VIC as the I/0 interface
for the player controllers (digital), player potentiometers
(analog), and the front panei controls (digital). The system
scratchpad RAM and Stack are in a 128 byte RAM in the PIC which

also contains a programmable 8 bit timer.

The 128 byte RAM in the PIC is shared between the MPU stack
and the system scratchpad RAM. The RAM is address transparent
between $0080 thru $00FF and $0180 thru $01FF. That is to say
that the same RAM appears in both of these address ranges
simultaneously and care must be exercised not to let the stack

alter the scratchpad RAM being used by the program.

VIDEO RF
PROGRAM
ROM cPU BUFFER
MODULATOR
6507 4050
2316 OR 2332 ‘
/N
VIDEO
OUTPUT
‘ SOUND
VIC OUTPUT
¢ 1
10444
I |
|
SYSTEM{;T!MER | I/O
RAM | g532 | Lé-.-—--
| | PLAYER
! ! CONTROLS
FRONT
PANEL
CONTROLS

ATARI VIDEO- GAME BLOCK DIAGRAM

FIGURE |

REV A 7-23-8i

VIC DESCRIPTION

The VIC is a Bus oriented device. The Microprocessor address
and Data Busses enter the VIC and access the major functional
areas. With the Address Bus the Microprocessor selects the area
it desires to communicate with. The information is presented or

received from the selected area on the Data Bus.

An external oscillator provides the 3.58 MHZ clock frequency
for the VIC. THe VIC then divides it by 3 to generate the clock

for the Microprocessor.

The VIC internally generates the Horizontal Sync, Blanking,
and Color Burst and generates 4 displayable colors per line
(Object A/Projectile A, Object B/Projectile B, Border/Foreground,
and Background). Each color is independently programmable, and
each one has a priority over the other. Some of the priorities
can be altered by the Microprocessor. There are 128 Programmable

colors for each of the above.

There are two fully programmable Objects (Object A and
Object B). Each of these Objects is 8 bits wide and is fully
programmable which means that there are 255 visible combinations
of display for each Object. There are two Object Font Registers
for each Object. Each Object Font Register contains one Byte (8
bits) of data. The direction in which the data is scanned can be

reversed. The horizontal size of the bits in the Object display

can be programmed to be 1, 2, or 4 units wide. Each of the
Objects can be programmed to be repeated one or two times after

the original and at different intervals from the original Object.

There are two dedicated objects (Projectile A and Projec-
tile B) that are related to the main Objects (Object A and Object
B). These Projectiles can only be 1, 2, 4, or 8 units wide. Pro-
jectile A can be programmed to track the horizontal movement of
Object A. Projectile B can be programmed to track the horizontal
movement of Object B. The Projectiles can be repeated hori-
zontally in conjunction with the associated Object. Projectile A
is repeated exactly as Object A and Projectile B is repeated

exactly as Object B.

There is also a dedicated object (Border) that can be moved
or used as a ball, Border, or center line. The Border can only be

l, 2, 4, or 8 units wide. The Border cannot be repeated.

The Foreground is a 20 bit memory that can be displayed in
one of four methods horizontally. Each bit is 4 units wide and
the active Foreground area is 160 units wide. The Foreground
memory acts as a register. The register is 2-1/2 bytes of RAM (20
bits). The Foredround Register is displayed two times each line

(40 bits/line).

An object can be made to appear over or under the Foreground

and Border and can appear over or under another object based on a

priority system. Object A, Object B, Projectile A, and Projectile
B can be programmed as higher or Tower priority than the Fore-

ground and Border.

Object A and Projectile A are always a higher priority than

Object B and Projectile B.

The horizontal movement of each Object (A and B), Projectile
(A and B), and the Border is controlled by the Microprocessor.
Each of these 5 can be moved left or right relative to the
Horizontal Reference Counter. Movement can be from -7 to +8

horizontal units per horizontal line sweep.

The VIC has a coincidence detection circuit that indiéates
when any two Objects, Projectiles, Foreground, Border, or any
combination of the above are coincidental with each other. A set
of 15 comparators compares each object against the other and
stores the result in a set of registers which can be read and

reset by the Microprocessor.

The VIC has 4 analog inputs with Schmitt triggers for
accurate repeat detection of the player potentiometer setting.
The analog inputs use a resistor~qapacitor circuit for the time
constant; the resistor is a potentiometer that is controlled by
the player. Each input has a progammable discharge transistor
that can be turned on to discharge the capacitor in the RC timing

circuit.

-10~

There are also 2 Trigger inputs which can be used as latching

Input Ports. Whenever one of these inputs goes to a "0" level,
this transition is stored in a latch that can be reset under
software control. The latching mode is programmable and when
turned off the data at the Trigger inputs is passed directly to

the MPU when read.

The VIC contains two Sound genertors each of the Sound

generators are connected to one of the two Sound Output pins.

The Sound Generator consists of a Programmable Divider that
divides the horizontal sweep frequency, a Sound Generator, and a
pro§rammable Output Driver. The Divider can be programmed to
divide the 15.7 KHZ horizontal sweep frequency by 1 to 32. The
Sound Circuit is programmable for 10 different sounds and tones.
This circult can produce a series of sounds from a simple tone to
a complex random noise. The Output Driver can be programmed for

15 different output levels.

-11-

VIC BLOCK DIAGRAM

FIGURE 2

g =3 =3 SEA ~ FREVQUENCY SOUND LEVEL SND
A2 Al AO ¢Sz 2| |cst CSO| |R/w] |02) " SN A |
L |
| /N /N / / /N /N
A3
]]
- SND
A4 ADDRESS 8US L) FREO;ENCY ;‘ SOUND ;‘ LE;EL A
DECODER TIMING '
‘ /N /N /N /N /)
AS ‘
| UM
[l Tk -
\ 4 - . il L
e \ d —¢ *
— . VU T 3wl —
DATA 11 FOREGROUNDI \V/ \/ j 2
’ oS >1 PENERATOR ' cgejitFrCt-:TR GEONREJREgOR v > PRIORITY COLOR
i
DR? :,\ ' A - A ; LOGIC GENERATOR LUM
| q
Rz, VRN W\
. ! ONTAL PROJECTILE PROJECTILE |
DR3 2 MOVE. COUNTER [—>|GENERATOR —> oA
MENT BRST
\/ VY
DB 4 A OBJECT OBJECT
; COUgTER GENEEATOR S COINCIDENCE o
MASTER | S a
DR5 _| counTER v \‘L\I(_SI/ {
8 PROJECTILE | . [PROJECTILE | | 3 READ
TIMING CougTER | GENESATOQ LOGIC CLR
ADJ
DE6 '
L \Y T —
——
BORDER - RORDER
DR7 [] COUNTER GENERATOR
0SC TGR TGR POT POT POT POT
N | |SYNG | ROY [| @o c % A B C D

REV A 7-28I

-'2_.

TO

DB4 p8s| |ose| |oB7 READ
LOGIC
. < RDOB7
DB3 * < RDB6
> DB?
DB2 > 'DB6
DATA BUS > DBS
> DR4
. DRIVERS z
DBl > DB3
> DB2
> DBl
DBO > DBO
‘ N
2
02 @2 TO READ
R/W READ > LOGIC
BUS
> $00
TIMING =
Sz —] - — — > $2C
ADDRESS
£Se DECODER
@2 WRITE
- L SIWRITE
S 22
¢3S0 l >A3
<4 TO
» —>A 2
. >a1 S
T > A0
|
AS AL A3 A2 Al AO

FIGURE 3

REV B 4/27/8I

-13=-

0SC

IN

$03 >

MASTER
COUNTER

DBO
DB I
$00
- $02
$0A
$2A

VERTICA L>
BLANKING

Do

RDY

SYNC

————i?CBF

H6

‘ SOUND CLK

C BLANKING
HCQI
HCQ2
HME

RIN
S LN

| j SCQl
SC@2

MASTER COUNTER LOGIC

FIGURE 4

REV A 4/29/8|

-14-

CLOCK >

HCDI
HCD2
RIN
LIN
$0D
$OE
$OF FOREGROUND |
DBO : GENERATOR f——>FGND
DB
DB2
DB 3
DB4
DBS
DB6
DB7

FOREGROUND GENERATOR
LOGIC

REV A 4/29/8}

FIGURE 5
-5~

HCOI >

HC22>

HME >
DB7 >

DB6 >

DB5 >

o84 >

$20 >

$21 >

$22>

$23>
$24 >

828>

HORIZONTAL
MOVEMENT
CLOCK
GENERATOR

RESET

- HORIZONTAL

—>MOVEMENT’
OBJECT A

HORIZONTAL

—>MOVEMENT
OBJECT B

HORIZONTAL

—>MOVEMENT

PROJECTILE A
HORIZONTAL

—> MOVEMENT

PROJECTILE B
HORIZONTAL

HORIZONTAL
MOVEMENT

FIGURE &

—>MOVEMENT
BORDER

REV A 4/29/81

- |6 -

CLOCK >
HORIZONTAL BORDER

MOVEMENT >

/v

BORDER
GENERATOR |~ gorpeR

SN
$14>

BORDER

REV A 4/28/8]
FIGURE 7 ~17-

OBJECT

N
CLOCK >
HZNTAL ~_

COUNTER

MOTION >
0BJ-AB

$10,311 >

OBJECT FONT

TIMING GENERATOR

NV

OBJECT FONT

GENERATOR

$25,$26 >

$18,31C

$1C,$18

/\/\/\

$0830C >

OBJECT GENERATOR LOGIC
FIGURE &

~
> PJTK

REV A 7-21-81

-8~

CLOCK >

HORIZONTAL - :

QEASNTAL PROJECTILE

PROJECTILE” A,B ‘————<F’J'TK
ASB | COUNTER ;
$12,313 > . |

-

W/ W\

$04,305> ‘ | |

$10,8I PROJECTILE

| szs,szé A B > PROJECTILE
GENERATOR S

PROJECTILE A,B

. | REV A
- . ' 7/31/81

FIGURE 9 , -19-

HE >

C BLNK

OBJECT A

AAN

OBJECT B

PROJECTILE A

AA

PROJECTILE B

BORDERE
FOREGROUND

<
04>

PRIORITY
LOGIC

AR

CLR BRST FLAG >

CLR

ADJ

BLNK
LUM
OBJECT ‘
COLOR
GENERATOR Lym
LUM
a4
Cl C2 c4 cs
' COLOR
_BURST CLR
GENERATOR BRST
COLOR LOGIC
R a
FIGURE 10 EVA 4/28/8I

-20-

A 3
A2 >—rr]

A | D
AO>

'READ LOGIC

DECODER

$0 $D

b S— o— — —— o—

OBJECT A>——

. OBJECT B>——r—
PROJECTILE A>— |
PROJECTILE B>
BORDER >——
FOREGND >——
STROBE >——

$2C D>—l

COINCIDENCE
DETECTION
LOGIC

> RDB7

READ>—¢

DB7 >——

DBE >——
DBl >————

$01 >—r

TGRA

INPUT

READ
LOGIC

>RDB6

 VERTICAL

TGRB

POT POT

FIGURE

~ BLANKING

REV A 4/28/8l

-2|-

. 2
scwzi% -—
szs<:
$17 >
DBQET——————*n 08O
DBI CLOCK 0B CLOCK
DB GENERATOR | DB2 | GENERATOR
Dgig SOUND A DR3 SOUND B
DR4
DB4 >
5162
315 >
, Vv \/
SOUND A SOUND B
WAVEFORM | WAVEFORM
GENERATOR GENERATOR
SlAZ
$19 >
VW ‘
TONE SOUND
LEVEL ~ LEVEL
GENERATOR GENERATOR
SND A SND B
ouT ouT
SOUND
GENERATORS
REV A
4/30/80
FIGURE |2

-22.

VIC THEORY OF CONTROL

The VIC is an Object oriented video circuit that is
controlled by the Microprocessor. The VIC automatically generates
the Horizontal scan for the Video System but the Microprocessor

provides the Vertical scan for each frame.

The Microprocessor controls the Vertical Blanking and the
Vertical Sync. The Microprocessor keeps track of the Horizontal
line scan count and the Vertical position of the objects. At the
correct Vertical position’the Microprocessor enables the objects
and supplies the font to the object generator one line at a time

until the objects have been fully displayed.

The VIC keeps track of the horizontal positon of each object
and retains that horizontal positon until directed to move the
object left or right by the Microprocessor. There are 160

distinct horizontal locations for an object.

Horizontal motion of an object is the movement left or right
at a constant rate (i.e., 1 horizontal unit per frame, 2
horizontal units per frame, or 1 horizontal unit every other

frame).
Vertical motion of an object is the movement up or down at a

constant rate (i.e., 1 horizontal line per frame, 2 horizontal

lines per frame, or 1 horizontal line every other frame).

-23=

Diagonal movement of. an object is the combination of
horizontal and vertical motion of an cbject at the same time. The
apparent direction of movement of an object can be determined by
using vector arithmetic. Motion in any one plane can be defined

as being either positive (+) or negative (-).

The two directions of motions are divided into two planes;
one called X, for horizontal motion, and one called Y, for
vertical motion. These two planes of motion will intersect each
other at a 90 degree angle and will form the basis of an X-Y graph
on which can be shown vectored motion. Vertical motion towards
the top of the screen will be positive (+Y) and towards the bottom
of the screen will be negative (-Y). Horizontal motion towards
the right will be positive (+X) and towards the left will be
negative (-X). The X-Y graph is then broken into four quadrants
and each of the quadrants is numbered from 1 to 4. The first
guadrant is in the upper right hand corner and is represented by
both +X and +Y motion, the second guadrant is the lower right
quadrant and is the +X and -Y motion. The third quadrant is the
lower left quadrant and is the -X and -Y motion, the fourth

quadrant is the upper left quadrant and is -X and +Y motion.

The horizontal movement range provided by the VIC is =7 to +8
horizontal units each time the motion is enabled. The motion
logic (HMENB) is normally enabled only one time per frame or
less. The maximum amount of horizontal motion normally used is

less than 7 units per frame.

-24-

For the purpose of this example which should cover most
applications the vertical motion will be limited from -8 to +8
horizontal lines per frame. As seen in figure 13 the amount of
the motion can be shown as a vector using the value of horizontal
motion and vertical motion on the graph in figure 14 and the
distance from the intersection of the X and Y axis to the value of

motion is the relative speed of the object.

In figure 15 vector A shows a moderate rate of motion in the
first quadrant, the object motion shown by vector B is in the
opposite direction at half of the rate of vector A. Both of these
examples show movement where the number of horizonatal units of
motion afe equal to the number of horizontal lines of vertical
motion. Vector C shows an example of a motion vector where X an Y

are not equal.

Figure 14 can be used to calculate the angles of motion that
can be generated on the screen using the VIC. It should be noted
that the aspect ratio of the Video Screen is 4:3 and the actual
angle seen will vary with this relationship. By making copies of
figure 14 it will be possible to actually draw each vector and

examine the rate of movement and the angle.

-25-

4TH QUADRANT
(—'x y+Y)

—+ +8

4+ +6
4+ +5
4+ +4

4 +2
-4+

| |

+ +7

4 +3

IST QUADRANT
(4X,+Y)

L1 1 1

N
! /+X

~N ! I i i] I

3RD QUADRANT
(=X,~Y)

FIGURE I3

i I ¥ i I I i
142 +3 +4 +546 +7 +8

2ND QUADRANT
(+X,-Y)

REV A 2-11-80
-26-

See

240

FIGURE 14

REV A 2-180

-27-

(+X,+Y)

(=X,=Y)

<
~ |

FIGURE 15

(+X,=Y)

REV A 2-11-80
| ~28-

SYNC & BLANKING

The VIC generates a frame of video information under the
direct control of the MPU. The VIC will automatically generate
the Horizontal Blanking, Horizontal Synchronization, and Color
Burst signals. The MPU must either directly or indirectly keep
track of the number of horizontal lines that have been scanned.

At the correct time, based on the number of lines scanned, the MPU
will write to the VIC and turn ON the Vertical Blanking. Then,
according to the timing requirement of the system, the MPU will
wait the correct number of lines and turn on the Vertical Sync.
The MPU will again wait for the correct period of time and then
turn off the Vertical Sync, and again at the proper time, turn off
the Vertical Blanking and begin a new frame of video.information.
Below is a list of nominal or commonly used timing spécifications

for the VIC vertical scan format:

Blanking Period Total) Sync Period

21 lines 3 lines

Start of Blanking to Sync Sync to Blanking End

3 lines 15 lines

For a NTSC Standard television there will be 262 lines per
frame. The Vertical Sync period should always be 3 lines but
number of visible lines added to the number of Vertical Blanked

lines should add up to 259.

-29-

BUS STRUCTURE

The Microcomputer System is organized around two primary
Busses and one secondary Bus. The two primary Busses each consist
of a set of parallel paths which can be used to transfer binary
information between the devices in a Microcomputer System. These
two Busses are the Address Bus and the Data Bus. The third Bus is
a control oriented bus consisting of the Microcomputer System
Clock (Phase 2), the READ/WRITE Control Line, the RESET Line, and

the RDY (Ready) Line.

The timing of all Data transfers are controlled by the System
Clock. The clock that we use as a reference is Phase 2 (02).
When 02 is low the Address Lines change, and when 02 is high the
Data Lines change. The VIC accepts the Data and Address
information when 02 is high and executes the Instruction or stores
the Data as 02 goes low during the next clock cycle. The timingA
of the signals on the Address Bus, Data Bus, and R/W line are

shown in figure 16 and figure 17.

Data on the data lines and address lines will be referenced
in hexadecimal (base 16) form. Each hexadecimal digit represents
4 binary bits. Data on the Data Bus is represented as 2
hexadecimal digits (8 bits) and data on the Address Bus is
represented as a two digit (page 0 only) or four digit (16 bits)

number. All hexadecimal numbers are preceded by a "$".

-30-

Teyc -
Vce-0.2V \ / | \
2, 02V , 4
.——-
0, \ vee-0.2V \ | /
- TRWS ol -
R/W i N
0.8V .
ADDRESS Ko \ :
FROM MPU ~ , . ,
DATA TADS_,, oV
FROM MPU ~ »
' . I ' — T;ADS"’ ~®TH he—
WRITE '

: l [‘ Ll
ADRESS BUSS ' '

IN VIC \l,@ QESS "0" \S,EE§ QE\,SS,S!
11} ‘ 1] .
DATA BUSS ‘ AR
TIMING FOR WRITING TO VIC "REV A
FIGURE 16 1-24-80

-3l

-lC -

hes- Tcye

L f“ Vce-0.2v \ / _—_
//,m

. ZDV 'Q--T u'u
R/W “0"
" .”
ADRESS 3.0V—"5 — =
FROM mMpy 0.8V ;\W\ " 0"
‘-TA[B—D ’ Z‘OV o 'u
DATA .
) non
FROM VIC . —
Tacc TOSU TS
| — i
READ ‘ "l“
ADRESS BUSS —
IN VIC _ ' 0 N
REV A
TIMING FOR READING DATA FROM VIC 1-24-80

FIGURF 17

32~

ADDRESS BUS

The Address Bus is used to transfer the Address generated by
the Microprocessor to the Address Inputs of the Memory, the
Peripheral Interface Circuit, and the VIC. The Microprocessor is
the only source of Addresses in the System, so this Bus is
referred to as unidirectional. The Address Bus consists of 13
lines. This allows the Microprocessor to access (READ or WRITE)

up to a total of 8,192 different address locations.

The 8,192 address locations are broken up into pages; there
are 256 address locations in each page and 32 pages. The
addresses are expressed in hexadecimal (base 16) form. One page
is expressed as having an address range of $00 to $FF (256
locations). The pages are also numbered in the same manner and
are labeled from $00 to $FF. The entire address range (8,192

locations) is numbered from $0000 to $O0FFF and $F000 to $FFFF.

There are 2 Pages of the Addresses that have very special
importance in the Microcomputer System. These are Page 0 ($0000
to $00FF) and Page 1 ($0100 to $01FF). Page 0 has special
importance because the Microprocessor has a special addressing
mode in which it can easily operate on the Addresses between $0000
and $00FF. Page 1 has special importance because the
Microprocessor requires RAM Memory in the top of Page 1 ($0100 to

$01FF) for the Microprocessor Stack.

-33-

The VIC is located in Page 0. The VIC has 45 addresses and
Page 0 has 256 addresses. The VIC occupies addresses $00 thru

$2C, and $40 thru $6C transparently.

The VIC is memory mapped and each of the 45 addresses has a
special function. Some of the address locations are control
registers or data registers and are controlled by the data stored
in these registers. Others are controlled only by addressing a

particular address during a write cycle.

-34-

DATA BUS

The Data Bus is used by the Microprocessor to communicate
with the VIC. The Microprocessor also uses the Data Bus to
communicate with the other circuits in the Microcomputer system.
The Data Bus is an 8 bit bi-directional data path between the
Microprocessor, the VIC, the Program ROM, and the PIC. The Data
Bus lines transfer Data from the Microprocessor to the VIC during
the Write operation, and transfers Data from the VIC into the
Microprocessor during the Read operation. All Data and most

Instructions are transmitted to the VIC on the Data Bus.

The direction of the Data transfer is controlled by the
READ/WRITE (R/W) Line on the Microprocessor. This line performs
the Write Enable function when it is low ("O" state). When it is
in this state the Data on the Data Bus will be received by the VIC
and stored in the appropriate Data Registers corresponding to the

address on the Address Bus.

When the Read Enable functions is being executed on the VIC
by the Microprocessor, the VIC outputs Data onto the Data Bus.
The VIC only uses 2 of the 8 Data Lines for outputing information,
unlike most other Peripheral Devices which use all 8 Data Lines.
DB6 and DB7 are the Data Lines used by the VIC to communicate
information to the Microprocessor. When the Microprocessor

performs the BIT Instruction on the VIC the Data on DB6 and DB7

-35-

are set directly into the V Flag Register and the N Flag Register
of the Microprocessor. The Microprocessor can then perform one of
the following Instructions based on the status of the V or N

Flag: BVC, BVS, BPL, or BMI.

-36-

SYSTEM MEMORY MAP

The followng Memory Map outlines the System Memory for the

Microcomputer System:

$F800~-$FFFF
$F000-$F7FF
$0280-3$02FF
$0180-$01FF
$0080-300FF

$0000~-3$002C

PROGRAM ROM HIGH (16K = 2K X 8)
PROGRAM ROM LOW (32K = 4K X 8)
I/0 INTERFACE & TIMER (PIC)
STACK RAM (PAGE 1) (PIC)

RAM (PAGE 0) (PIC)

VIC

-37 -

VIC MEMORY MAP

The following Memory Map shows the Address locations of the

VIC functions in Page 0 from $00 thru $2C:

LABEL

$00
$01

$02
$03

$04

$05

$06

$07

$08
$09

$0A

$0B
$oc
$0D
$0E

$0F

VSYNC

VBLNK

HSYNC
CRHOR

OBASR

OBBSR

CLROA

CLROB

CLRFB
CLRBG

BDRSZ

OBADR

OBEBDR

FGNDA

FGNDB

FGNDC

FUNCTION
Vertical Sync Register

Vertical Blanking and Input Control
Register

RDY (READY) Line Set
Horizontal Counter Reset

Object A and Projectile A Size and
Repeats Register

Objects B and Projectile A Size and
Repeats Register

Object A and Projectile A Color
Register

Object B and Projectile B Color
Register

Foreground and Border Color Register
Background Color Register

Border Size and Foreground Control
Register

Cbject A Scan Direction Register
Object B Scan Direction Register
Foreground Font Register A
Foreground Font Register B

Foreground Font Register C

-38-

LABEL

$10
$11
$12
$13
$14
$15
$16
$17
$18
$19
$1A
$1B
$1C
$1D
$1E
$1F
$20
$21
$22

$23

$24
$25
$26
$27

CROBA
CROBB
CRPJA
CRPJB
CRBDR
SNDAS
SNDBS
FREQA
FREQB
LVLSA
LVLSB
OBJAF
OBJBF
PJAER
PJBEB
BDREB
HMOBA
HMOBB

HMPJA

HMPJB

HMBDR
OBARS
OBBRS

BDRES

FUNCTION
Object A Counter Reset
Object B Counter Reset
Projectile A Counter Reset
Projectile B Counter Reset
Border Counter Reset
Sound A Select Register
Sound B Select Register
Sound A Frequency Select Register
Sound B Frequency Select Register
Sound A Level Register
Sound B Level Register
Object A Font Register
Object B Font Register
Projectile A Enable Register
Projectile B Enable Register
Border Enable Register
Object A Horizontal Movement Register
Object B Horizontal Movement Register

Projectile A Horizontal Movement
Register

Projectile B Horizontal Movement
Register

Border Horizontal Movement Register
Object A Font Select Register
Object B Font Select Register

Border Enable Select Register

-39-

$28
$29

$2a
$2B

$2C

LABEL

PJATK

PJBTK

HMENB

HMRST

OCRST

FUNCTION

Projectile A Tracking and Disable
Register

Projectile B Tracking and Disable
Register

Horizontal Movement Enable
Horizontal Movement Registers Reset

Coincidence Logic Latch Reset

-40~-

$0280
$0281
$0282
$0283
$0284
$0285
$0294
$0295
$0296
$0297

PIC MEMORY MAP

I/0 PORT A (PLAYER CONTROLS)
I/0 PORT A DATA DIRECTION REGISTER
I/0 PORT B (FRONT PANEL CONTROLS)
I/0 PORT B DATA DIRECTION REGISTER
TIMER (READ)

TIMER FLAG (READ)

02 divided by 1 (WRITE)

02 divided by 8 (WRITE)

02 divided by 64 (WRITE)

02 divided by 1024 (WRITE)

-41-

$0280 (READ) and $0281 (WRITE)

PAQ RIGET CONTROLLER PIN 1
PAl RIGHT CONTROLLER PIN 2
PA2 RIGHT CONTROLLER PIN 3
PA3 RIGHT CONTROLLER PIN 4
PA4 LEFT CONTROLLER PIN 1
PAS LEFT CONTROLLER PIN 2
PA6 LEFT CONTROLLER PIN 3
PA7 LEFT CONTROLLER PIN 4

$0282 (READ) and $0283 (WRITE)

it
i

PBO GAME RESET " UP (NORMAL) "0" DOWN (DEPRESSED)

i
i

PB1 GAME SELECT i UP (NORMAL) "O" DOWN (DEPRESSED)

PB2 NO CONNECTION

PB3 TV TYPE "1" = COLOR "0" = B/W

PB4 NO CONNECTION

PB5 NO CONNECTION

PB6 LEFT DIFFICULTY Wl = A (UP) "0" = B (DOWN)
PB7 RIGHT DIFFICULTY "1" = A (UP) "0" = B (DOWN)

SYNCHRONIZATION OF MPU TO VIC

The Microcomputer program that is used to generate the Video
Display does not have a direct method of determining the condition
of the horizontal scan of the VIC. The Microprocessor must have
some method of counting the number of Horizontal Lines that have

been scanned as well as a way of determining when the Horizontal

Blanking is on.

The Microprocessor can be synchronized to the VIC Horizontal
Scan by using a closed loop type of control circuit. The. 6500
series Microprocessor has the ability to be halted during a READ
Cycle by pulling the RDY (Ready) Input to the Microprocessor to
the low ("0") state. The VIC has an outéut that controls the RDY
Line and the Microprocessor controls the VIC forming a closed loop

control circuit.

After the Microprocessor has executed the portion of the
program for a given Horizontal Scan and it has used less than the
maximum number of Microprocessor Cycles for that Horizontal Scan
we must halt the Microprocessor until the beginning of the next
Horiztonal Scan. In this manner we use up the previously unused

Microprocessor Clock Cycles by being in a wait mode.

-43-

The Wait Function is initiated by executing a WRITE to HYSNC

($02) using the STA, or STX, or STY Instruction. When the HSYNC

Command is executed, the VIC will set the RDY Line to the Wait

condition, then as the Horizontal Scan ends, the VIC will

automatically release the Microprocessor from the Wait Mode and

normal program execution will resume.

~-44~

VIC FUNCTIONS

This Chapter describes in detail the function of every
Address and Data Bit that can be programmed in the VIC. There are
drawings with many of the descriptions so that the programmer may
see what is actually happening to the VIC as these Functions are

executed.

The programmer should exercise caution when using certain
Commands or Control Registers as some of these Commands and
Control Registers are Video Scan Time sensitive. When a Function
is Time sensitive, the descripfion will explain when the Function
can be executed. Execution of a Command or a WRITE Cycle to a
Control Register will be described in Microprocessor Clock
Cycles. There are 76 Microprocessor Clock Cycles in each

Horizontal Scan.

The programmer is advised to utilize the Page 0 Address
capability of the 6500 series Microprocessor when reading from or
writing to the VIC. This will save one Byte in the ROM each time
a READ or WRITE is programmed and will save one Microproceésor
Clock Cycle each time a READ or WRITE is executed. Each of the
Functions of the VIC are grouped together so that Indexed
Addressing can be used efficiently when programming the VIC. The
use of the Offset makes the transferring of Data from ROM to the

VIC very software efficient.

-45-

VERITCAL SYNC CONTROL REGISTER

The VSYNC ($00) Vertical Sync Control Register is used to

enable the Vertical Sync Function. This Register uses DBI.

The VIC automatically generates the Horizontal Sync Signal
and the Color Burst. To generate the Vertical Sync, the
Horizontal Sync signal is inverted. When DBl is a "O0", the normal
Horizontal Sync signal is generated. When DBl is a "1", the

Horizontal Sync signal is inverted and the Color Burst is Disabled.

An example program that generates the Vertical Sync is shown

in VBLNK ($01).

Figure 18, on the following page, shows the Horizontal Sync,
Horizontal Blanking, Color Burst Flag, and Composite Video Signals
automatically generated by the VIC when the Veriical Sync and

Vertical Blanking are off.

-4 6=

-—Lb -

ATARI NTSC SYNC

57
o 1+ 2 3 4 5 6 T 8 9 10 U 12 13 14 15 1 17 18
228
0 8 16 24 32 . 40 48 56 64 72
H
BLNK l
SYNC
CBF
COMPOSITE
VIDEO
] 19.Op SEC —
5.3 SEC : 451U SEC 45U SEC - 4.7 4 SEC

[

FIGURE 18 REV A 7-21-81

-47~

VERTICAL BLANKING

The VBLNK ($01) Vertical Blanking Control Register is a
multiple function Register. It is used to control the Vertical
Blanking, to control the Trigger Input Latches, and to control the
Analog Input Capacitor Discharge Transistors. The Vertical

Blanking Register uses DB1l, DB6, and DB7.

The Vertical Blanking is controlled by using VBLNK (0L
Control Register. The Blanking is controlled by DBl. When DBl is
a "0", the Vertical Blanking is OFF. When DBl is a "1", the
Vertical Blanking is ON. The program to generate Vertical

Blanking and Vertical Sync would look similar to the following

sample program:

LDA #$XX****x]* Data to turn on Blanking

“e

STA HSYNC Wait for beginning of next line

s

STA VBLNK . Turn on Blanking

At this point, a program would be executed to wait until the
Sync is to be turned on. Also, subroutines could be performed

during part of this waiting period.

LDA #3$02 : Data to turn on Sync

STA HSYNC Wait for beginning of next line

-

STA VSYNC ; Turn on Sync

-48~-

STA HSYNC ; Wait for end of 1lst line of Syne

STA HSYNC ; Wait for end of 2nd line of Sync
LDA #$00 ; Data to turn off Sync
STA HSYNC ; Wait for end of 3rd line of Sync

STA VSYNC ; Turn off Sync

Again, a program would be executed to wait for the end of the
blanking period. Also, subroutines could be performed during part

of this waiting period.

LDA #$XX**%*%xQx* ; Data to turn off Blanking
STA HSYNC i Wait for beginning of next line
STA VBLNK i Turn off Blanking

At this point, the program would begin executing the next

frame of video to be displayed.

NOTE: X

H

Bit is used to perform another function, not related

to this example.

Bit not used, can be either 0 or 1.

The VBLNK Control Register also controls a portion of the
Read logic. DB6 controls the data storage latches on pins 35 and
36. DB7 controls the capacitor discharge transistors on pins 37

thru 40.

pins 35 and 36 are used as digital inputs. These pins can be
programmed to be either level sensitive or edge sensitive. When
DB6 is set to a "0", the logic state on the Input Pin will be
passed directly to the Data Bus when a Read is performed on the
address associated with that particular input. When DB6 is set to
a "1", an internal latch is enabled. Once enabled, any negative
input transition will set the latch to the logic "O" state and
will remain set until it is cleared. The internal latch can only
be cleared by setting DB6 to a "0" while the Input Ppin is a logic

"l“.

Pins 37 thru 40 are dual purpose pins which can be used as
A/D converter inputs or as digital Inputs. When used in the A/D
converter mode, a capacitor is connected between the input pin and
ground. A potentiometer and fixed resistor are connected between
the pin and the positive power supply. The RC time constant must
be selected to allow the capacitor to charge above the trigger
level of the Input. The discharge transistors are turned on by
setting DB7 to a "1". When the discharge transistor is ON, the
charge stored in the capacitor is released to ground and restores
the voltage across the capacitor to nearly 0. When DB7 is set to
a "0", the discharge transistor is turned off and appears as an
open circuit. The voltage across the capacitor will begin to

increase at the rate determined by the following equations:

~50~-

Dv = (DT X I)/ C

I = (V/ R)

DV is change in voltage, DT change in time, C value of

capacitor, V voltage across potentiometer, and R value of

potentiometer plus the value of the fixed resistor.

When the voltage across the capacitor exceeds the trip
voltage of the Schmitt Trigger Input, the logic state of the pin
will change in the Read Logic. The time that is required‘to
exceed the trip voltage is used to determine the relative setting
of the potentiometer; that is, the higher the value of the
potentiometer, the longer it will take to exceed the trip
voltage. We can determine the time it takes by periodically
reading the status of the pin through the Read Logic. Each time
we read the pin, we can increment a register, and when we detect
the logic state change of the pin, the contents of the register
will indicate the relative time that was required to reach the

trip point.

When pins 37 thru 40 are used as digital Inputs, the

Discharge Transistors are not used.

-51~-

RDY LINE CONTROL

The HYSNC ($02) Command is used to synchronize the Horizontal
Blanking and Horizontal scan of the VIC to the Microprocessor.
This is a Command level Instruction which is executed only by
writing to the Address. There are not any Data Bits associated
with this Command, therefore the Data on the Data Bus during the
WRITE Cycle will not affect in any way the execution of this
Command. HSYNC can be executed using the STA, STX and STY

Instructions.

This Command is used to halt the program execution until the
beginning'of the next Horizontal Sweep. At the beginning of the
next Horizontal Sweep the Microprocessor will resume program
execution. The beginning of a Horizontal Sweep is defined as the
point where the Horizontal Blanking (HBLNK) line goes low and
starts the Blanking period. Twenty-two (22) Microprocessor Clock

Cycles can be executed during the Blanking period.

The programmer must be careful to exercise caution when
writing Data to the VIC; which will cause a change to the visible
area of the screen; when the Horizontal Blanking is off. Writing
to the Font or Control sections of the Objects, Projectiles,
Border, or Foreground should be done during the Horizontal and

Vertical Blanking time or at a time that the Object is not visible.

-52-

The VIC executes the HSYNC Command by setting the RDY (READY)
line to the low state ("0") and halting the Microprocessor. The
VIC then returns the RDY line to the high state ("1") just before
the Horizontal Blanking turns on again. When the RDY line has
returned to the high state the program execution will then resume

in a normal manner.

"There is one Microprocessor Clock Cycle during which the
HSYNC Command cannot be executed. It is located just before the
Horizontal Blanking turns on. When the WRITE to HYSNC occurs
during the very last Microprocessor Cycle, it will be ignored.
This occurs when the number of Microprocessor Clock Cycles for the
Instructions used during the Horizéntal écan are equal to the
total number of Microprocessor Clock Cycles used in one or more

Horizontal Scans, and the last Instruction is a HSYNC Command.

The following figures show the timing of the HSYNC Command
and the RDY Line Control. Figure 19 shows the use of HSYNC during
the middle of a Horizontal Scan and the action of the VIC to the
RDY Line. Figure 19 also shows the release of the RDY by the the
VIC. Figure 20 shows the relationship between 8o and the
Horizontal Blanking Line and the synchronization of the 8o Line to
the Horizontal Blanking. Figure 21 shows the critical WRITE areas

at the beginning and end of a Horizontal Scan.

-53~

RDY

Do __1
0,
‘R/W
H BLNK
RDY ’
0o __1|
02 —1 | | L
R/W - |
i FIGURE 19 REV. B

16/81 -54

ngg-

H BLNK

N
\

FIGURE 20

REV. B 8/16/8li
-55-

H BLNK

R/W

RDY

R/W

RDY

R/W

RDY

FIGURE 2|

REV A FIO-80

-56-

HORIZONTAL COUNTER RESETS

The Horizontal Counter Reset Commands are used to Reset the
Master Timebase Counter, the Object Counters, the Projectile
Counters, and the Border Counter. The Commands and their

respective counters are as follows:

CRHOR ($03) Master Timebase Counter

CROBA ($10) Object A Timebase Counter Reset
CROBB ($11) Object B Timebase Counter Reset
CRPJA ($12) Projectile A Timebase Counter Reset
CRPJB ' ($13) Projectile B Timebase Counter Reset
CRBDR ($14) Border Timebase Counter Reset

Each one of these is a Command Level Instruction which 1is

executed only by writing to the Address. There are not any Data

Bits associated with these Commands, therefore the Data on the
Data Bus during the WRITE Cycle will not affect in any way the
execution of these Commands. These Commands can be executed using

the STA, STX, and STY Instructions.

When the CRHOR Command is issued, the Master Timebase Counter
for the VIC is reset to its starting state which is the beginning

of the Horizontal Blanking.

When the CROBA, CROBB, CRPJA, CRPJB, and the CRBDR Commands
are executed, the Object being written to will be reset to the
left side of the screen if the command is executed during the

Horizontal Blanking period.

During the execution of a game program it may be desired to
move an Object, Projectile or the Border to a known location.
This may be done by using the Horizontal Counter Reset for the
Object, which will place the Object in a known location and then
move the object to the desired location. The Horizontal Counter
Reset Commands should normally be executed during the Horizontal
Blanking Period. There are 23 Microprocessor Clock Cycles during

the Horizontal Blanking when the Reset Command can be executed.

The following is a sample program in which all of the Objects

are initialized to their reset location.

STA HSYNC
STA CROBA
STA CROBB
STA CRPJA
STA CRPJB

STA CRBDR

~-58~

Figure 22 shows the location of the Objects and the Border
after the Horizontal Counter Reset Commands have been issued to

the VIC during the Horizontal Blanking Period.

-59 -

0SsC

H BINK

BORDER

OBJECT A

OBJECT B

PROJECTILE A

PROJECTILE B

FGND

-09-(

OBJECT POSITION AFTER
COUNTER RESET

HORIZONTAL

[LL 1

ARERE

L

FICT'RE 22

REV A
- 26/80

OBJECT AND PROJECTILE SIZE AND REPEATS

The OBASR ($04) and OBBSR ($05) registers are used to control
the size of each bit of the Objects and the size of the
Projectiles. These registers also control the repeat Objects and

Projectiles. These registers use DBO, DBl, DB2, DB4, and DBS.

These registers actually perform two separate functions. The
first function is the size of the Object and how many times the
Object and Projectile will be displayed in one horizpntal scan.
The second indépendent function is the horizontal size of the

Projectile.

DBRO, DBl, and DB2 are used to control the Object size and the
number of times the Object and Projectile will be rebeated. The
Object size is the number of VIC Clock Cycles for each Bit in the
Object Font. The width of a Bit can be programmed to be 1, 2, or
4 VIC Clock Cycles wide. When the size of an object is programmed
to the 2 or 4 VLC Clock Cycle Mode, the location of the origin of
the left most Bit (DB7 or DBO) will remain in exactly the same
location as when the 1 VIC Clock Cycle Mode is selected. However,
the location of all of the other Bits will be shifted to the
right. 1In addition to controlling the size of an Object, the
number of times that an Object and its associated Projectile
(Object A and Projectile A, Object B and Projectile B) will be

repeated to the right of the main Object or Projectile are also

-61~

controlled. An Object and Projectile can be displayed up to 3
times horizontally. The repeat Objects and Projectiles are the
same color as the main Objects. The repeat Objects and
Proijectiles are spaced 16, 32, or 64 VIC Clock Cycles after the
beginning of the main Object or Projectile. The location of the
repeat Object and Projectile is a function of the size of the main
Object. The repeat Objects are the same horizontal size as the

main Object.

The following table shows the different combinations of

Object size and repeats:

of VIC Clock # of Repeat Objects and
DB2 DB1 DRO Cycles Per Bit Projectiles and Location

0 0 0 1 0 N/A
0 0 1 1 1 repeat 16 apart
0 1 0 1 1 repeat 32 apart
0 1 1 1 2 repeat 16 apart
1 0 0 1 1 repeat 64 apart
1 0 1 2 0 N/A
1 1 0 1 2 repeat 32 apart
1 1 1 4 0 N/A

DB4, and DB5 control the size of the Projectile independently
of the size of the Object and the number of repeats of the Objects

and Projectiles. The size of the Projectile is the number of VIC

-62-

Clock Cycles. The Projectiles can be programmed to be 1, 2, 4, or
8 VIC Clock Cycles wide. Each of the repeat Projectiles will also
be the same size as the main Projectile. The left edge of the
projectile will remain in exactly the same horizontal location
regardless of the size of the Projectile. Only the right edge of
the Projectile will move as the size is altered. Figure 22 on

page 60 shows the 4 different sizes of the Projectiles.

The following table shows the size and width of the

Projectiles in VIC Clock Cycles and NSEC:

DB5 DB4 # of VIC Clock Cycles Width in NSEC
0 0 1 280
0 1 2 560
1 0 . 4 1120

1 1 8 2240

COLOR CONTROL REGISTERS

The Color Control Registers are used to select the Color of
each of the Objects, the Projectiles, the Border, the Foreground
and the Backgournd. These Control Registers use DBl thru DB7.

The Registers are as follows:

CLROA ($06) Object A and Projectile A Color Control Register
CLRCB ($07) Object B and Projectile B Color Control Register
CLRFB ($08) Foreground and Border Color Control Register

CLRBG ($09) Background Color Control Register

The Color Control Registers use DBl thru DB7 to Control the
Color. DBl, DB2, and DB3 are used to control the Color Intensity
and DB4, DBS, DB6, and DB7 are used to control the Color Phase.

There are 128 color combinations.

The color of an Object does not affect any of the Coincidence

Detection or Priority Circuits in the VIC. The actual colors
displayed on the video screen when two Objects overlap will be the
color of the Object with the higher priority. An Object with a
Black color will still have coincidence detected with other

Objects when they overlap each other.

-64-

the 15 colors and the Color Burst Reference.

Figure 23 shows the phases selected by the VIC for each of

The phases used to

generate each color can be looked up in the color table below.

programmed to the 128 different Colors by combining the high Data

Bits

The following two tables show how each Object can be

(Hue) and the low Data Rits

DATA

$0x
$1X
$2x
$3X
$4X%
$5x
$6X
$7x
sex
$9Xx
$AX
$BX
$CX
$DX
$EX

$FX

HUE

GREY

YELLOW -ORANGE

ORANGE
RED-ORANGE
RED

PINK
MAGENTA
PURPLE
RED-BLUE
BLUE

BLUE

LIGHT BLUE
CYAN
BLUE-GREEN

GREEN

YELLOW~GREEN

COLOR BURST

(Luminance) :

APPROXIMATE PHASE (in degrees)

NONE
0
24
48
72
96
120
144
168
192
216
240
264
288
312
336

-65-

DATA LUMINANCE LEVEL

$X0 or $X1 13%
$X2 or $X3 25%
$X4 or $X%5 38% .
$X6 or $X7 50%
$X8 or $X9 63%
$XA or $XB 75%
$XE or $XF 100%

The data in these two tables is combined together to generate

the 128 possible colors.

-Lg-

COLOR PHASE OUTPUT

ow LML 1
o1 o T LI+ LI

PSRN s TN e SN p IS g N

o 1L LI L L I
oL M1 L 1L LTI

oM
ON

FIGURE . 23

REV.B

DEGREES
0

24
48
72
96
120
144
168
192
216
240

264

288
312

336

8/16/8l

-67-

BORDER SIZE AND FOREGROUND CONTROL REGISTERS

The BDRSZ ($0A) Control Register is a multiple function
Register. It controls the horizontal size of the Border as well
as the Scan Control for the Foreground, the Color format for the
Foreground, and the Priority of the Border and Foreground in
relation to the Objects and Projectiles. This Control Register

uses DBO, DBl, DB2, DB4, and DBS.

DBO and DBl are used to control the Foreground Display Mode.
There are 4 different display modes. DBO controls the scan
sequence of the Foreground. DBl controls the Color of the
Foreground during the scan sequence. The Foreground is a 20 bit
register (see Section 3.9 FOREGROUND FONT REGISTEﬁS) that 1is
scanned 2 times per horizontal line. Each Bit is 4 VIC Clock
Cycles wide. The first scan of the Foreground is fixed and cannot
be altered. The second scan is controlled by DBO. When DBO is
programmed to a "0", the second scan of the Foreground register is
exactly the same as the first scan. When DBO is programmed to a
"1" the second scan of the Foreground is reversed. That is, the
last Bit displayed during the first scan will be the first Bit
displayed during the second scan and the first Bit displayed
during the first scan wil; be the last Bit displayed during the

second scan creating a mirror image of the first scan.

-68-

When DBl is programmed to a "0", the color of the Foreground
will be as programmed by the CLRFB (308) Register for the entire
scan. When DBl is programmed to a "1", the color of the first
scan (left half of the screen) will be the color of Object A and
Projectile A, CLROA ($06). The color of the second scan of the
Foreground Font Register (the right half of the screen), will be
the color of Object B and Projectile B, CLROB ($07). These 4

modes of display of the Foreground are shown in figure 24,

DB2 controls the Priority of the Border and Foreground in

relation to the Objects and Projectiles. There are 2 different

Priority modes of display. The normal priority, DB2 programmed to

a "0", is Object A and Projectile A, Object B and Projectile B,
Border and Foreground, then the Background Color. The priority
relationship between the Objects and Projectiles cannot be
altered, however, the priority relationship of the Border and
Foreground can be altered to the Objects and Projectiles. Wwhen
DB2 is programmed to a "1", the second Priority mode is selected.
In the second mode the Priorities are: Border and Foreground,
Object A and Projectile A, Object B and Projectile B, then the

Background Color.

DB4 and DBS control the Border Size. The size of the Border
is the number of VIC Clock Cycles. The Border can be programmed

to be 1, 2, 4, or 8 VIC Clock Cycles wide. The left edge of the

-69 -

Border will remain in exactly the same location regardless of the
size of the Border. Only the right edge of the Border will move
as the size is altered. Figure 22 on page 60 shows the 4 dif-

ferent sizes of the Border.

The following table shows the size and width of the Border in

VIC Clock Cycles on NSEC:

DBS DB4 4 of VIC Clock Cycles wWidth in NSEC
0 0 1 280
0 1 2 560
1 0 4 1120
1 1 8 2240

-70~

—"]_m

FOREGROUND DISPLAY

l-s00~——s0e— - _$OF-—E¢2$ODﬂ+--$OE $OF
[5(6]7|7|6|5[4{3|2[1|0[o|1|2|3|4|s|e|7|4|5|6|7{7|6|5|4a|3|2]i [o]o]i [2]3]als[6]7
~-CLRFB 308 CLRFB 308 >
| X1 '
~$0D—~ $OE +~——30F——f+——$0F $OE —$0D—=
A51817[7[8[5)43|2 tolo|1|2]3]4{s|s| 7| 7[s|s|a3|2] i |o]o]i]2]3[a]s]6[7[Te]s e
CLRFB $08 CLRFB 308
| $X 2
~-$0D+l~——$O0F— BOF——f-$0D—fe——$0E J——$OF——
a|s|6|7|7]s|s|a[3]2]i [o[o] i [2[3[a]s[e[7[a[s[e[7|7lelslalal2l Tolg 2|3|4(s|s|7
— CLROA $06 . CLROR 307
. $X3
=—$00 $OE JOF ——$0F —— $OE—+|-$0D—*
3158171716514 3]21[0]o]1]2|3]4|5]e|7| 7|e|s|a|3|2|1 [o[o] i [2]3]a]5[e] 7 lc 5T
CLROA $06 ol CLROB $07 .

FIGURE 24

REV A 4/27/8I

71

OBJECT SCAN DIRECTION CONTROL REGISTERS

The Object Scan Direction Control Registers are used to
control the order that the Data in the Object Font Registers 1is

displayed. The Registers use DB3. The Registers are as follows:

OBADR ($0B) Object A Scan Direction

OBBDR ($0C) Object B Scan Direction

DB3 Controls which direction the Object Font is scanned for
the Video Dispiay. Wwhen DB3 is a "0", the Font Data is scanned
from left to right (DB7 to DBO). When DB3 is a "1", the Font Data

is scanned from right to left (DBO to DB7).

The following table shows the action of DB3 for the OBADR and

OBBDR Control Registers:

DB3 FONT SCAN DIRECTION
0. Scan Seaguence is DB7-DB6-DBS-DR4-DB3~-DB2-DB1-DBO
1 Scan Sequence is DB0-DB1-DB2-DB3-DB4-DB5-DB6-DB7

-72-

FOREGROUND FONT REGISTERS

The Foreground Font Registers are used to store the Display

Font Data -for the Foreground. The Font Registers are as follows:

FGNDA ($0D) Foreground A Font Register
FGNDB ($0E) Foreground B Font Register
FGNDC ($0F) Foreground C Font Register

The Foreground Font Register FGNDA uses DB4 thru DB7 and
Foreground Font Register FGNDB and FGNDC use DBO thru DB7 to store
the Foreground Font Data. Each Font Data Bit is four VIC Clock

Cycles wide when it is displayed.

The Foreground appears to be a RAM Memory Block of 20 Bits
that can be displayed in one of four different Horizontal Display
Modes. The active Foreground area is 160 VIC Clock Cycles wide.
Each Data Bit in the Foreground is 4 VIC Clock Cycles Wide
regardless of the Scan Mode selected. The Foreground Registers

are displayed 2 times each Horizontal Scan.

The Foreground is two and a half Bytes of RAM (20 Bits). The
Foreground Display is a combination of displaying the Foreground
Register two times. The four methods of displaying the Foreground

are controlled by the BDRSZ ($0A) Control Register. The programmer

-73-

should read the BDRSZ description for a complete explanation of
the Foreground display methods. Figure 24 on page 71 shows the
location of each of the Data Bits of the Foreground. Figure 24

also shows all four of the different modes of Foreground display.

-74-

SOUND SELECTION REGISTERS

The SNDAS ($15) and SNDBS ($16) Sound Selection Registers are
used to select the Waveform shape for Sound Generator A and Sound

Generator B. The Selection Registers use DBO, DBl, DB2, and DR3.

There are 10 different Sound Waveforms and an OFF condition
that can be selected by the Sound Selection Registers. Of the 16
possible Sound Selections, 2 are the OFF condition and 4 are

duplicates of the 10 different Sound Waveforms.

The 10 Sound Waveforms range from a simple Square Wave to a
complex Waveform. The Waveforms are composed of from 1 to 12
different frequency components. The Sounds generated by the

Waveforms range from a simple Tone to White Noise.

The Frequence at which the waveform will begin to repeat the
wave shape is referred to as the Divider Ratio. The number of
different Frequencies in a Waveform is referred to as the

Freguency Spectrum.

The actual Frequency at which the VIC Sound Waveform will
begin to repeat is a function of the Sound Waveform selected and
the Frequency selected for the Sound Waveform. This Frequency can

be calculated by looking up the frequency in the table in the Sound

-75~

Frequence description and divide that frequency by the Divider
Ratio and then multiply by 2. The following table shows the

Divider Ratio and the Fregquency Spectrum of each of the Sound

wWaveforms:

DATA DIVIDER RATIO FREQUENCY SPECTRUM
$X0 OFF 0
$X1 15 4
$x2 465 5
$x3 465 12
$x4 2 1
$X5 2 1
$X6 31 2
$X7 31 5
$X8 511 9
$X9 31 5
$XA 31 2
$XB OFF 0
$XC | 6 1
$XD 6 1
$XE 93 2
$XF 93 7

Figure 25 shows the actual Wave Shape of the 10 different

Wwaveforms generated by the Sound Generator Circuit in the VIC.

~ SOUND GENERATOR OUTPUT WAVEFORMS
$00,508B> {OFF
sol 5 [11LJU] +15

$02 > |

| !
Y 1 | [1 B 3
Y | v ;
Y J l | 1 -] 'l+465
$03 UL UL_J1T N 1 1 I e B e W T
1 i 8y Yy Y Y I s Yy 19
S 0y) S oy F oy N3 I RN s Vs I o B s [B o B
YR 8 Y ey T T s e N OO s N o B o B Y s SN e e B g PP
- 04,805.]] <2 |) N
$06, $OA [1 +31
so7, soo, JLIULS LITU UIN <3
$08> e | S R T T) T B B e N N T e i e W N i W Tl 3

soc, soD. [1+6

‘$0E [

 $OF. | I N NS I S e L1 [1 +93

REV. B
8/14/81 -

FIGURE 25 77—

SOUND FREQUENCY SELECTION REGISTERS

The FREQA ($17) and FREQB ($18) Sound Frequency Selection
Registers are used to select the Clock Frequency for Sound
Generator A and Sound Generator B, respectively. The Selection

Registers use DBO, DBl, DB2, DB3, and DB4.

There are 32 different frequencies that can be programmed
into the Sound Clock Generator Circuit. The Sound Frequency
Selection Register is used to select the 32 frequencies. The 32
frequencies are the Horizontal Sweep Frequency doubled and then
divided by an integer from 1 to 32. The Horizontal Sweep

Frequency is 15,700 Hz.

The Integer Divider Factor for the Sound Frequency Generator.
can be calculated by converting the Hexadecimal Data stored in the
Frequency Selection Registers to Decimal and adding 1 to the
Decimal value. The Hexadecimal value must be in the range of $00
to $1F. For example, $00 is a Divider Factor of 1, $10 is a

Divider Factor of 17, and $1F is a Divider Factor of 32.

The following tables show all of the possible Frequencies
that can be programmed into the VIC Sound Frequency Selection
Registers. The Frequencies listed below are the actual Output
Frequency with the Sound Generator programmed to the highest

possible frequency ($04, a divided by 2 Tone). The following

-78-

table lists the Hexadecimal Data programmed into the Sound

Freguency Selection Register and the Sound Output Frequencies (in

Hertz):

DATA DIVIDER FREQUENCY DATA DIVIDER FREQUENCY
$00 1 15699.76 $10 17 923.52
$01 2 7849.88 $11 18 872.21
$02 3 5233.25 $12 Al9 826.30
$03 4 3924.94 $13 20 784.99
$04 5 3139.95 $14 21 747.61
$05 6 2616.63 $15 22 713.63
$06 7 2242.82 $16 23 682.60
$07 8 1962.47 $17 24 654.16
$08 9 1744.42 $18 25 627.99
$09 10 1569.98 $19 26 603.84
$0A 11 1427.25 $1A 27 581.47
$0B 12 1308.31 $1B 28 560.71
$0C 13 1207.67 $1C 29 541.37
$0D 14 1121.41 $1D 30 523.33
$0E 15 1046.65 $1E 31 506.44

$0F le 981.23 $1F 32 490.62

SOUND OUTPUT LEVEL REGISTERS

The LVLSA ($19) and LVLSB ($1A) Sound Output Level Control
Registers are used to Control the amplitude of the Audio Outputs
of the Sound Generator Circuits. These Registers use DBO, DBI1,

DB2, and DB3.

There are two Audio Output Pins on the VIC. Sound Gener-
ator A is connected to Pin 13 and Sound Generator B is connected
to Pin 12. Each of the Sound Outputs can be programmed
independently of each other to 15 different Output Levels. When
both of the Sound Outputs are programmed ON at the same time, up
to 30 different Output Levels can be generated. The two Sound
Output Pins are connected together so that the two Sounds are

mixed together into one Output signal.

The Outputs from the Sound Generators act like a Binary
weighted Current Source to V-. The Outputs are ratio'd 1:2:4:8.
DBO controls the lowest amplitude device and DB3 controls the

highest amplitude device.

When both Sound Generators are ON at the same time the sounds
being created will be mixed together so that more than one sound
can be made at the same time. The Sound Generators can also be

used as a type of envelope control on each other.

-8Q -

The following table shows the relative Output Current Levels

for each of the Sound Outputs:

DATA OUTPUT LEVEL
$X0 0.0%
$x1 6.7%
$X2 13.3%
$X3 20.08%
$x4 26.7%
$X5 33.3%
$X6 40.08%
$X7 46.7%
$x8 53.3%
$X9 ' 60.0%
$XA ' 66.7%
$XB 73.3%
$XC 80.0%
$XD 86.7%
$XE 93.3%

$XF 100.0%

OBJECT FONT REGISTERS

The Object Font Registers are used to store the Object Font

Data for the VIC. The Object Font Registers are as follows:

OBJAF ($1B) Object A Font Register

OBJBF ($1C) Object B Font Register

The Object Font Registers use DBO thru DB7 to store the
Object Font Data. There are two Font Data Registers at each
Object Address. One of the Object Font Data Registers is the
On-Line Register and the second Object Font Data Register is the
Delayed Register. The programmer should read the Object Scan
Direction and Register Select description for a complete
explanation of the use of the On-Line Register and the Delayed

Register.

The programmer should also read the following descriptions of
Control Registers that control the display of the Object Font Data:
Object and Projectile Size and Repeats
Object Scan Direction Control Registers
Object Font Register Selects

Projectile Tracking and Disable Registers

-82 -

PROJECTILE ENABLE CONTROL REGISTERS

The PJAER ($1D) and PJBEB ($1E) Control Registers are used to
Enable each of the Projectiles A and B. These Control Registers

use DBl.

PJAEB and PJBEB allows the programmer to use a single Address

“location to Enable a Projectile.

PJAEB controls one of the Enable Functions for Projectile A.

The other Enable is controlled by the Projectile A Tracking

Register PJATK ($28).

PJBEB controls one of the Enable Functions for Projectile B.
The other Enable is controlled by the Projectile B Tracking

Register PJBTK ($29).

DBl controls the Enable Function. When DBl is programmed to
a "1", the Projectile is Enabled if the Projectile Tracking
Function PJATK or PJBTK ($28 or $29) is programmed to a "g", When

DBl is programmed to a "0", the Projectile is Disabled.

-83-

BORDER ENABLE REGISTERS

The BDREB ($1F) Border Enable Registers are used to enable

the Border. The Border Enable Registers use DBl.

There are two Border Enable Registers. One of the Border
Enable Registers is the On-Line Enable Register and the other
Border Enable Register is the Delayed Enable Register. The
On-Line Enable Register is connected directly to the VIC Internal
Data Bus as are most of the Data Registers in the VIC. The
Deiayed Enable Register is delayed by a WRITE Cycle to OBJBF ($1C)

(Object B Font Register).

When the On-Line Border Enable Register is selected and the
Data in the On-Line Register is a "0", the Border will be
Disabled. When the data in the On-Line Register is a "1" the

Border will be Enabled.

When the Delayed Border Enable Register is selected and the
Data in the Delayed Register is a "0", the Border will be
Disabled. When the Data in the Delayed Register is a "1", the

Border will be Enabled.

The following table shows the movement of Data thru the

Border Enable Registers:

...84‘._

.DATA WRITE ON-LINE REGISTER DELAYED REGISTER

- - 0 0
BDREB ($1F) 1 0
OBJBF ($1C) 1 1
BDREB ($1F) 0 1
OBJBF ($1C) 0 0
BDREB ($1F) 1 0
BDREB ($1F) 0 0

The following table shows the Border Enable Registers and

when the Border is Enabled:

| F)
BDRES ($27) ON-LINE DELAYED
BORDER REGISTER REGISTER REGISTER

OFF 0 0 0
OFF 0 0 1
ON 0 1 0
OoN 0 1 1
OFF 1 0 0
ON 1 0 1
OFF 1 1 0

ON 1 1 1

HORIZONTAL MOVEMENT CONTRCL REGISTERS

The Horizontal Movement Control Registers are used to select
the amount of Horizontal Movement for the Objects A, and B,
Projectiles A, and B and the Border. These Control Registers use

DB4 thru DB7. The Registers are as follows:

HMOBA ($20) Object A Horizontal Movement Control Register =

HMOBB ($21) Object B Horizontal Movement Control Register ~©
HMPJA ($22) Projectile A Horizontal Movement Control Register i/
HMPJB ($23) Projectile B Horizontal Movement Control Register .
HMBDR . ($24) Border Horizontal Movement Control Register s

The Horizontal Movement Control Registers use DB4, DB5, DB6
and DB7 to control the Horizontal Movement. DB7 controls the
direction of movement and DB4, DBS5 and DB6 control the magnitude

of the movement. The movement range is -7 to +8 VIC Clock Cycles.

The Horizontal Movement of an Object, Projectile, or the
Border is performed by writing the amount of movement desired to
the appropriate Movement Control Register and then executing the
HMENB Command. The Horizontal Movement of the Objects,
Projectiles, or the Border can be set to 0 by writing the Data
"$0X" to the Movement Control Register. The five Horizontal
Movement Registers can all be reset to 0 movement by executing the

HMOVR Command.

La 9

-86-

When the Movement Register is set to O and the HMENB Command
is executed, the Object will remain stationary. Wwhen the Movement
Register is set to -1 and the HMENB Command is executed, the
origin of the Object will be moved one VIC Clock Cycle to the left
one the screen. When the Movement Register is set to +1 and the
HMENB Command is executed, the origin of the Object will be moved

on VIC Clock Cycle towards the right on the screen.

The Object Size does not affect the operation of the
Horizontal Movement Circuit. The number of VIC Clock Cycles that
an Object must move to get from one side of the screen to the

other side of the screen is 160.

When an Object is moved to £he far left or right side of the
screen and then is moved beyond the edge, the Object will begin to
wrap around the screen. Wrap around occurs as the Object moves
across the Horizontal Blanking. When wrap around occurs, the left
side of the Object will be displayed on the right side of the
screen and the right side of the Object will be displayed on the

left side of the screen.

Horizontal wrap around can be eliminated by setting the
Border to be 8 VIC Clock Cycles wide and setting its color to the
same color as the Background, thus making it invisible. The

Border is then set to a higher priority than the Objects and

-87-

Projectiles that are to be prevented from wraping around and
pPlaced with 4 VIC Clock Cycles on each side of the screen. When
an Object or Projectile comes into coincidence with the Border, it
will disappear behind the BRorder and coincidence can be checked
between the Object or the Projectile and the Border and the Object
or Projectile can be prevented from wrapping around to the other
side.

The direction of horizontal movement of an Object,
Projectile, or the Border can be reversed at the same rate of
movement by taking the Two's-Complement of the Data in the
Horizontal Movement Control Register. The following is an example
of a program that could be used to reverse the horizontal movement

of an Object, Projectile, or the Border:

LDA MOTION ; LOAD OLD MOVEMENT RATE
AND #3$FO : REMOVE LOW NIBBLE

EOR #$FO ; INVERT HIGH NIBBLE

CLC ; CLEAR CARRY

ADC #$10 ; ADD 1

STA HMXXX ; STORE NEW MOVEMENT RATE

The following table shows the relative movement of an Object,
Projectile or the Border from the original position in VIC Clock

Cycles:

-88~

$0X
$1X
$2X
$3X
$4X
$5%
$6X
$7X
$8X
$9X
$AaX
$BX
$CX
$DX
$EX

$FX

DB4 MOVEMENT
0 0
1 -1
0 -2
1 -3
0 -4
1 -5
0 -6
1 -7
0 +8
1 +7
0 +6
1 +5
0 +4
1 +3
0 +2
1 +1

-89 -

OBJECT FONT REGISTER SELECT

The Object Font Register Select Control Registers are used to
control which of the two Object Font Registers are to be

displayed. The Registers use DBO. The Registers are as follows:

OBARS ($25) Object A Font Register Select

OBBRS ($26) Object B Font Register Select

DBO selects the Object Font Register to be displayed. When
"DBO is a "0", the On-Line Register is selected. When DBO is a
"1l", the Delayed Register is Selected. The On-Line Register is

connected directly to the VIC internal Data Bus as are most of the

Data Registers in the VIC. The Delayed Register is delayed by a /.. /

WRITE Cycle to the other Object Font Register. G,

The Object Font Registers are paired together. When Object
Font Data is written to Object A, the Font Data stored in the
| On-Line Register of Object B will be transferred to the Delayed
Register of Object B. When Object Font Data is written to Object
B, the Font Data stored in the On-Line Register of Object A will

be transferred to the Delayed Register of Object A.

The following table shows the action of DBO for the OBARS and

OBBRS Control Registers:

-8~

DBO REGISTER SELECT

0 Selects ON-LINE Register

1 Selects DELAYED Register

The following table shows the movement of Font Data through

the Registers:

OBJECT ON-LINE DELAYED ON-LINE DELAYED
WRITE REGISTER A REGISTER A REGISTER B REGISTER B
OBJAF FONT 1 - - - - - - - - -
OBJBF FONT 1 FONT 1 FONT 2 - - -
OBJAF FONT 3 FONT 1 FONT 2 FONT 2
OBJBF FONT 3 FONT 3 FONT 4 FONT 2
OBJAF FONT 5 FONT 3 FONT 4 FONT 4

-91-

BORDER ENABLE SELECT REGISTER

PR
T SR
{

v
The BDRES ($27) Border Enable Select Register is used to

select one of two Enable Registers for the Border. The Register

uses DBOQ.

There are two Enable Registers for the Border. One of the
Enable Registers is the On-Line Register and the other Enable
Register is the Delayed Register. When DBO is "0", the On-Line
Enable Register will Enable the Border. When DBO is "1", the

Delayed Enable Register will Enable the Border.

The On-Line Enable Register is used to Enable or Disable the
Border directly. The Delayed Enable Register can be used to
Enable or Disable the border indirectly while Writing Object Font
Data to Object B. This allows the programmer to set up the Enable
Data in the On-Line Register and then transfgr the actual Border
Enable when the next WRITE Cycle to OBJB?GQQiC) is executed. The
Programmer is directed to read the BDREB&7§Z?; (Border Enable -

Registers) description for more information concerning this

Register (BDRES).

-92-

PROJECTILE A AND B TRACKING AND DISABLE REGISTERS

The Projectile Tracking and Disable Control Registers are
used to Disable each of the Projectiies and to control the
Tracking Function for each of the Projectiles. These Control
Registers use DBl.

G
PJATK 1$28) Projectile A Tracking and Disable Register

b 3’?

AN . . .
PJIBTK ($29)J Projectile B Tracking and Disable Register
PJATK and PJBTK allows the programmer to use a single Address
location to Disable a Projectile and to Enable the Tracking

Function.

PJATK controls one of the Disable Functions for Projectile A
and it Enables the Trécking Function. The Tracking function
allows the Programmer to force Projectile A to track Object A
horizontally regardless of Projectile A's previous position.
Projectile A cannot be moved horizontally away from Object A until
the Tracking Function has been turned OFF. When the Tracking
Function is Enabled, Projectile A is Disabled and will follow

Object A if it is moved.

PJBTK controls one of the Disable Functions for Projectile B
and it Fnables the Tracking Function. The Tracking Function
allows the programmer to force Projectile B to track Object B
horizontally regardless of Projectile B's previous position.

Projectile B cannot be moved horizontally away from Object B until

-9 3~

the Tracking Function has been turned OFF. When the Tracking
Function is Enabled, Projectile B is Disabled and will follow

Object B if it is moved.

Figures 26 thru 28 show the position relationship between
Object A and Projectile A and the relationship between Object B

and Projectile B when the Tracking Function is Enabled for each of

the different sizes of Object A and Object B.

DBl controls the Tracking Function. When DBl is progammed to
a "0", the Tracking Function is OFF and if the Projectile 1is
Enabled (see PJAEB and PJBEB) it will be Enabled. When DBl is
programmed to a "1", the Tracking Function is turned ON and the

Projectile will be Disabled.

-94~

' OBJECT A

PROJECTILE A

OBJECT B

PROJECTILE B

0sC

-96-

OBJECT AND
" PROJECTILE RELATIONSHIP WITH
TRACKING FUNCTION ENABLED

IX OoJECT SIZE

(TITTTTL]

[TTTIT1111

[UL L

FIGURF - 26

REV A
2/2 30

-95

-96-

OBJECT AND
PROJECTILE RELATIONSHIP WITH
TRACKING FUNCTION ENABLED
2X OBJECT SIZE

oecra_J | [[[1]

I
PROJECTILE A- | J | 1
OBJEC.T:B | “‘f' ; I I I » J | I

PROJECTILE B ‘ : l
0osC
FIGURE 27 REV A
7/30/81
- -96

OBJECT AND
PROJECTILE RELATIONSHIP WITH
TRACKING FUNCTION ENABLED

4X OBJECT SIZE

OBJECT A f

. PROJECTILE A

OBJECT B J

[L

PROJECTILE B

0SC

0&6-

FIGURE 28

REV A

7/30/80

HORIZONTAL MOVEMENT ENABLE
mv’z’;‘;

The HMENB ($2A) Command is used to enable the movement of
Object A, Object B, Projectile A, Projectile B, and the Border.
This is a Command Level Instruction which is executed only by
writing to the Address. There are not any Data Bits associated
with this Command, therefore, the Data on the Data Bus during the
WRITE Cycle will not affect in any way the execution of this
Command. HMENB can be executed using the STA, STX, and STY

Instructions.

HMENB 1is a scan oriented Command which must be executed
immediately following a HSYNC Command. Due to the nature of this
Command, it must be executed during the Horizontal Blanking period
and is affected by the Microprocessor Clock (62) . Twenty-six (26) V//
Microprocessor Clock Cycles must pass before the HMENB Command has

finished executing.

Immediately after the HMENB Command has been issued to the

VIC, there are certain Commands and Registers that must not be
Pers H 7T £mi A sAcA

executed or written to. These include HMENB, CRHOR, CRBDR, CROBA,

SBLA MALP m &L A Remy Fmot SAw sBont man/

CROBB, CRPJA, CRPJB, HMRST, HMBDR, HEMOBA, HMOBB, HMPJA, and

m ety

HMPJB. If any of these are executed or written to, the Movement

Command will not be executed correctly, and the Objects may move

to a different location than expected or desired. After the

-98~-

Horizontal Blanking has been turned off, normal operation is
resumed and we may utilize these commands and registers normally
again.
/lgv,f’x}
When the HMENB Command is executed, the Horizontal Blanking

Period is extended for 8 OSCILLATOR clock periods.

-30Q -

HORIZONTAL MOVEMENT REGISTERS RESET
Rem /

The HMRST ($2B) Command is used to reset the Horizontal
Movement Registers in the VIC. This is a Command Level
Instruction which is executed only by writing to the Address.
There are not any Data Bits associated with this Command,
therefore the Data on the Data Bus during the WRITE Cycle will not
affect in any way the execution of this Command. HMRST can be

executed using the STA, STX, and STY Instructions.

This Command resets all 5 Horizontal Movement Registers in
the Movement Circuit. When these Registers are reset the motion
for Object A, Object B, Projectile A, Projectile B, and the Border
is set to 0 motion. This one Command is the equivalent of writing
the Data "$0X" to HMOBA ($20), HMOBB ($21), HMPJA ($22), HEMPJB

($23), and HMBDR (3$24).

The Horizontal Movement Registers will remain in the reset
condition ("0") until Movement Data is written into the Movement
Registers. This Command can be used when movement of one or more
Objects is to be executed and the other objects are to remain
stationary. By writing to @&g%gzthen writing the motion Data only

to the Objects that are to be moved several Microprocessor Clock

Cycles and ROM Bytes can be saved in the program.

-100-

OBJECT COINCIDENCE REGISTER RESET
BHeT

The OCRST ($2C) Command is used to reset the Coincidence
Detection Registers in the Read Logic Section of the VIC. This is
a Command Level Instruction which is executed only by writing to
the Address. There are not any Data Bits associated with this
Command, therefore the Data on the Data Bus during the WRITE Cycle
will not affect in any way the execution of this Command. OCRST

can be executed using the STA, STX, and STY Instuctions.

This Command resets all 15 Coincidence Detectibn‘Registers in
the Read Logic Circuit. When these Registers are reset and then
read by the Microprocessor the Data at the Output of the VIC will
be a "0". When Coincidence for a Register is detected the
Register will be set. After the Register has been set and is read
by the Microprocessor the Data at the Output of the VIC will be a

"l"‘

The Coincidence Detection Registers will remain in the reset
conditions ("0") until Coincidence for a Register is detected.
Once Coincidence for a Register has been detected and the Register
is set ("1") it will retain the Coincidence Detection indefinitely
or until the OCRST Command is executed. The only method that can
be used to reset the Coincidence Detection Registers is to execute

the OCRST Command.

-101-

The Coincidence Detection Registers are normally read once
per frame during the Vertical Blanking period using the BIT
Instruction. After having read the Register and immediately prior
to turning the Vertical Blanking OFF the OCRST .Command is
executed. The OCRST Command can be executed at any time, however,
it erases any Coincidence Detection during or prior to the

execution of the OCRST Command.

-102-

COINCIDENCE AND INPUT REGISTERS

The Coincidence Registers are used to store the results of
the comparison of the Object Coincidence Detection Circut. The
Input Registers are used to store and transmit the status of the
potentiometer and Schmitt Trigger Inputs. These Addresses are

READ by the Microprocessor on DB6 and DB7.

The Coincidence Detection Circuit provides Object to Object,
Object to Projectile, Object to Foreground,AObject to Border,
Projectile to Projectile, Projectile to Foreground, Projectile to
Border, and Border toO Foreground Coincidence. Coincidence between
any of the Objects, Projectiles, Border, Or Foreground is stored
in a set of Registers that can be Read by the Microprocessor.
These Registers can only be cleared by writing to the OCRST ($2C)
(dbject Coincidence Register Reset) Address. There are 15
Registers that can pe Read to check for Coincidence between the
Objects, Projectiles, Border, and Foreground. The status of the
Registers 1is Output to the Microprocessor on DBR6 and DB7. This
allows the Microprocessor to use the BIT Test Instruction on the
particular Address to be tested followed by the BMI or BPL Branch
Instructions to test DB?, and the BVS or BVC Branch Instructions

to test DB6.

The four Potentiometer Inputs and the two Schmitt Trigger

Inputs can also be Read by the Microprocessor in the same manner

as the Coincidence Detection Circuit. These Inputs are all Output
on DB7. This allows the Microprocessor to use the BIT Test
Instruction followed by the BMI or BPL Branch Instructions to test

DB7.

The two Schmitt Trigger Inputs have a Register to store the
results of any Input transition to the "0" level. This allows
these Inputs to be used as Edge Detection Inputs. The Edge
Detection will be stored in the Register until cleared by the
Microprocessor. See the VBLNK ($01) (VERTICAL BLANKING CONTROL

REGISTER) description.

The following table lists all of the READ Addresses for the

VIC and the Functions that can be Read at each Address:

READ
ADDRESS DB6 DB7
$X0 OBJECT A / PROJECTILE A OBJECT B / PROJECTILE A
$x1 OBJECT B / PROJECTILE B OBJECT A / PROJECTILE B
$k2 OBJECT A / BORDER OBJECT A / FOREGROUND
$x%3 OBJECT B / BORDER OBJECT B / FOREGROUND
$x4 PROJECTILE A / BORDER PROJECTILE A / FOREGROUND
$X5 PROJECTILE B / BORDER PROJECTILE B / FOREGROUND
$x6 BORDER / FOREGROUND
$x7 PROJECTILE A / PROJECTILE B OBJECT A / OBJECT B
LEFT CONTROLLER PIN 5
$x8 POTENTIOMETER (VIC PIN 40)
LEFT CONTROLLER PIN 9
$x%9

POTENTIOMETER (VIC PIN 39)

-104-

READ ADDRESS DB6

$XA

$XB

$XxC

$XD

DB7

RIGHT CONTROLLER PIN 5
POTENTIOMETER (VIC PIN 38)
RIGHT CONTROLLER PIN 9
POTENTIOMETER (VIC PIN 37)
LEFT CONTROLLER PIN 6
SCHMITT TRIGGER (VIC PIN 36)
RIGHT CONTROLLER PIN 6

SCHMITT TRIGGER (VIC PIN 35)

-105-

SYSTEM I/0

The Atari Video Game System I/O is located on the front panel
of the console and on the back of the console. The front panel
I/0 consists of the five switches that are labeled TV Type, Left
Difficulty, Right Difficulty, Game Select, and Game Reset. The
I/0 on the back of the console is interfaced through two 9 pin
connectors labeled Right Controller and Left Controiler. There
are four different types of Controllers that can be connected to
the Game System. . These are the Joystick Controllers, the Paddle
Controllers, the‘Keyboard Controllers, and the Steering

AControllers.

The five front panel controls are connected to the 6532 Port
B. The position of these switches can be read at address $0282.
Each switch is represented by one bit of data. Three of the data
bits are not used (DB2, DB4 and DBS5). The "Game Reset" switch is
DBO, the "Game Select" switch is DBl, the "TV Type" switch is DB3,
the "Left Difficulty" switch is DB6, and the "Right Difficulty"
switch is DB7. See page 42 for an explanation of the switch
position and the logic state of each of the data bits as they are

read from the 6532.

One note of caution should be made about using the Data
Direction Register for Port B at address $0283. When the power is
first turned on, a power-up reset pulse is applied to the 6532

reset pin. When the reset is activated, the Data Direction

-106-

Registers are set to the logic "0" state which in turn causes all
pins on both Port A and Port B to become inputs. When the pins of
the Ports are inputs, a pullup resistor to the positive power
supply is connected to each pin. Each of the front panel control
switches is connected between oné of the Port B pins and the
electrical ground of the Game System. When a switch is in the
open position, the voltage at the associated pin will be a logic
mi", wWhen a switch is in the closed position the input pin will

be connected to ground resulting in a logic "0".

If a bit of the Port B Data Direction Register is programmed
to a logic "1", the associated pin becomes an output. Wwhen a Port
B pin is an output and a read of address $0282 is executed, the
data that will be read is from the Output Register for Port B not
the logic state of the Port B pin, resulting in incorrect data.

To prevent this problem the Data Direction Register at address
$0283 should not be programmed to anything other than the data $00

which is the same as the power on reset condition.

The two connectors on the back of .the Game System are
connected to both the 6532 and the video Interface Circuit. Four
of the pins on each connector are connected to Port A of the 6532,
three of the pins on each connector are connected to the Video
Interface Circuit, and two pins on each connector are each
connected to the power supplies. The connections of each of these

9 pin connectors are shown in the following table:

-107-

Left Controller Right Controller

Connector Connector
Pin # Pin #

Ll PA4 (6532 PIN 12) R1 PAQ (6532 PIN 8)
L2 PAS (6532 PIN 13) R2 PAL (6532 PIN 9)
L3 PA6 (6532 PIN 14) R3 PA2 (6532 PIN 10)
L4 PA7 (6532 PIN 15) R4 PA3 (6532 PIN 11)
L5 VIC PIN 40 RS VIC PIN 38
L6 VIC PIN 36 R6 VIC PIN 35
L7 +5V R7 +5V
L8 GROUND R8 GROUND
Lo VIC PIN 39 R9 VIC PIN 37

Please note that PAQ is Port A of the 6532 and is read or
written to at address $0280 and is DBO. The same is true for each

of the other pins through to PA7 which is DB7 of address $0280.

Controller Connector Pins R1, R2, R3, R4, L1, L2, L3, and L4
are each connected to 0.001 ufgd capacitor, which is connected to
ground, and the 6532 Port A which can be individually programmed
to be either an input or an output by using the Data Direction
Register for Port A at address $0281 which controls PAQ thru PA7.
For more information, the reader is directed to the Data Sheet for

the 6532.

Controller Connector Pins R5, R9, L5, and L9 are connected

through a 1.8K resistor to the VIC Potentiometer Inputs on pins 37

~-108-

thru 40. There is a 0.068 ufd capacitor connected between ground
and each of the Potentiometer Inputs. The four Potentiometer
Inputs are inputs only, however, there are two different input
modes. One of the modes is the Potentiometer mode and thé other
is the Digital mode. The use of these inputs in these two modes
is explained in more detail in the description of the Vertical

Blanking Control Register ($01) beginning on page 48.

Controller éonnector Pins R6 and L6 are each connected to
pins 35 and 36 of the VIC through a CMOS Buffer. Pins R6 and L6
each have a 10K resistor connected between the pin and the
positive power supply (+5V). There is also a 220 pfd capacitor
petween the pin and ground. The CMOS Buffer (4050) is non-
inverting so the same logic state at the Controller Connector will
appear at the VIC Input pin. The input logic levels will be as
defined in the Data Sheet for the C(MOS Buffer (4050) . The Schmitt
Trigger input of the VIC cannot be used as it is being driven by
the CMOS Buffer Output. These two inputs have two different modes
of operation which are explained in more detail in the description
of the Vertical Blanking Control Register ($01) beginning on page

48.

-109-

JOYSTICK CONTROLLERS

The Joystick Controllers consist of an X-Y joystick and a
push button. These activate 5 separate switches. The push button
activates a normally open SPST momentary switch. The X-Y joystick
can activate one or two of four normally open SPST momentary
switches. The five switches are connected between the ground pin

(Pin 8) and one of the input pins.

The push button is connected between Pin 8 and Pin 6. When
the switch is open the logic state will be a logic "1". When the

button is depressed the logic state will be a logic "O".

With the push button (P-B) in the upper left corner we can
define the location of the four switches for the joystick. The
four switches are positioned 90 degrees from each other. When
looking down at the controller, the position straight up is
defined as the "forward" or "up" position. The position 180
+degrees from that position is defined as the "reverse" or "down"
position. The position 90 degrees from the "up" position to the
right will be called the “"right" position and the position 180
degrees from there will be the "left" position. One of each of

the four X-Y switches is associated with each of these positions.
The "up" position is associated with the switch connected

between Pin 1 and Pin 8 (Ground). The "down" position is

associated with the switch connected between Pin 2 and Pin 8

~-110~

(Ground). The "left" position is associated with the switch
connected between Pin 3 and Pin 8 (Ground). The "right" position
is associated with the switch connected between Pin 4 and Pin 8

(Ground) .

When the joystick is moved into one of these positions the
switch associated with that position will be closed connecting the
input pin associated with that switch to ground. With the
Joystick Controller connected to the connector on the Video Game
System the associated pin of the 6532 Port A will be grounded.
Wwhen grounded, and with the pin programmed to the Input Mode the
data at that pin will be a logic "0". when none of the pins are
grounded the 6532 wfll read the data $FF. Each of the Joystick
Controllers is associated with the high or low nibble of address
$0280. The low nibble is associated with the Right Controller and

high nibble is associated with the Left Controller.

If the joystick is moved to a position midway between an
adjacent pair of switches, both switches will be activiated. This
creates 8 possible positions for the joystick, plus the center
position with all of the switches open. These positions and the
pins associated are shown below in their relative position whén

they are activated:

-111-

BP_BN HUP"

"LEFT" 3 4 "RIGHT"

2-3 ' 2-4

2
"DOWN"

The following table shows the position of the joystick, the
switches that will be closed and the data for the nibble

associated with each of the 9 possible combinations:

g Joystick Position Pins Connected to Pin 8 Data

Center NONE $F
Up ' 1 $E
Down 2 $D
Left 3 $B
Right 4 $7
Upper Right 1, 4 $6
Lower Right 2, 4 $5
Lower Left 2, 3 $9
Upper Left 1, 3 $A

The push button is read through the VIC at address $0C or $0D

on DB7. The push button for the Joystick Controller connected in

-112-

the "Left Controller" position is read at address $0C, and the
"Right Controller" is :ééd at address $0D. When the push button
is depressed and the switch is closea, the data read from the VIC
will be a logic "0". When the push button is not being pushed and
the latching mode for the VIC input is not selected, the data read

from the VIC will be a logic i

-113-

PADDLE CONTROLLERS

The Paddle Controllers consist of two separate controllers
attached to a single connector. The Video Game System can accept
up to four controllers attached to two connectors. Each
controller contains a 1.0 Megaohm linear taper potentiometer and a
normally open SPST momentary switch. The potentiometer is mounted
in the center of the controller with a knob attached. The push
button is mounted on the left side of the controller. When the
knob is rotated fully clockwise the minimum resistance value is
selected. As the knob is rotated in the counterclockwise
direction the value of the resistance selected will increase until
the maximum value is selected when the knob reaches the full

counterclockwise position.

The first controller has one side of the switch connected to
Pin 4 and the other side connected to Pin 8 (Ground). The
potentiometer has one side connected to Pin 7 (+5V) and the wiper
arm connected to Pin 5. The second controller has one side of the
switch connected to Pin 3 and the other side connected to Pin 8
(Ground). The potentiometer has one side connected to Pin 7 (+5V)

and the wiper arm connected to Pin 9.

The push button switches are read from the 6532 Port A at
address $0280 on data bits DB2, DB3, DB6, and DB7. The
potentiometers are read through the VIC from the four

Potentiometer Inputs.

~-114-

The position setting of the Potentiometers is determined by
measuring the time constant of the RC network created by the
connection of the capacitor on the input pin of the VIC to the +5V
power supply through the 1.8K resistor and the potentiometer.
Before the time constant can be measured, the capacitor must be
discharged. This is done by the VIC. The discharge transistors
are turned on at the beginning of the Vertical Blanking Period
which discharges the capacitors. At the end of the Vertical
Blanking Period the discharge transistors are turned off and the
capacitors begin to charge up towards the +5V power supply level.
The lower the resistance setting of the potentiometer the faster

the capacitor will charge up.

The Potentiometer Inputs of the VIC are level sensitive
inputs and when the input voltage exceeds the trip point, the
logic state at this input will change from a logic "O0" to a logic
"1", The software pfogram tests the potentiometer input status by
reading the appropriate address of the VIC once per horizontal
line until the logic level shift is detected. For more
information about the use of the Potentiometer Inputs seée the
description of the Vertical Blanking Control Registers ($01) on

pagde 48 and the description of the Coincidence and Input Registers

on page 103.

-115-

KEYBOARD CONTROLLERS

The Keyboard Controller consists of a keyboard with 12
normally open SPST momentary switches. The keyboard is layed out
exactly like a standard push button telephone. The push buttons
are labeled "1", "2", "3", w4m", wgn owmgw wgn 8", "om, nrQmn, mwxv,
and "#". [Each push button activates a switch that is connected
between 2 of the pins on the Controller Connector. The switches

are wired in a X-Y matrix. The matrix is 4 rows by 3 columns.

The top row contains the switches "1", "2", and "3"; and one
side of each of these switches is connected to Pin 1. The second
row contains the switches "4", "5", and "6"; and one side of each
of these switches is connected to Pin 2. The third row contains
the switches "7", "8", and "9"; and one side of each of these
switches is connected to Pin 3. The bottom row contains the
switches "*", "0", and "#"; and one side of each of these switches

is connected to Pin 4.

The left column contains the switches “1", "4", "7", and "*",
and the other side of these switches is connected to Pin 5. The
middle column contains the switches "2*, "s5", "8", and "0": and
the other side of each of these switches is connected to Pin 9.
The right column contains the switches "3", "6", "9", and "$#"; and
the other side of each of these switches is connected to Pin 6.
Pin 6 on the Left Controller and Right Controller connectors on

the Video Game System have an internal pull up resistor to the +5V

-116-

power supply. Pins 5 and 9 do not have a pull up so a 4.7K
resistor is connected between Pin 5 and Pin 7 (+5V), and between

pin 9 and Pin 7 (+5V) inside the Keyboard Controller.

The Keyboard Controllers require that the keyboard be scanned
in order to determine what switch is depressed if any. This is
done by using Pins 5, 9, and 6 which are used as inputs to the
Video Game System. Pins 5 and 9 will be used in the digital
mode. Pins 1, 2, 3, and 4 will be used as outputs from the Video
Game System. This requires that the Data Direction Register for
Port A of the 6532 at address $028l1 be programmed to the output
moée. Depending on which connector the Keyboard Controller is
connected to, the four bits associated with Pins 1, 2, 3, and 4
are programmed to the logic "Q" gstate one at a time. The data at
the input of Pins 5, 9, and 6 is examined to see if any of these

pins are at the logic "0" state.

Wwhen all of the switches are open (normal state) Pins 5, 9,
and 6 will all be at the logic "1" state regardless of the logic
state of Pins 1, 2, 3, and 4. 1If Pins 1, 2, 3, and 4 are all
programmed to the logic "1" state and any of the switches are
closed, the Pins 5, 9, and 6 wi;l remain at a logic "1". However,
if one of the Pins 1, 2, 3, and 4 is programmed to a logic "0" and
one of the switches in the row associated with that pin is closed,
the pin associated with the column the closed switch is in will be
pulled to the logic "0" state. The software can then determine,

by matching up the row and column, which button was closed. If

-117-

two or more switches are closed simultaneously then incorrect

results may be derived unless the software is written to account

for this possibility.

The following table shows the pins that will be connected for

each of the buttons when they are pressed:

BUTTON ROW PIN NO. COLUMN PIN NO.
1 1 5
2 1 9
3 1 6
4 2 | 5
5 2 9
6 2 6
7 3 5
8 3 9
9 3 6
0 4 9
* 4 5
4 6

-118-

STEERING CONTROLLERS

The Steering Controllers consist of a shaft encoder and a
push button. The push button activates a normally open SPST
momentary switch. The shaft encoder generates a two bit Gray
Code. The push button switch and the shaft encoder are connected

between the ground pin (Pin 8) and one of the connector pins.

The push button switch is connected between Pin 6 and Pin 8
(Ground). When the switch is open the logic state will be a logic
"1", wWhen the push button is depressed the logic state will be a

logic "0".

The shaft encoder is attached to a knob. The knob can be
rotated 360 degrees continuously. There are 16 separate positions
of the shaft in the 360 degress of rotation. The shaft encoding
is broken into four quadrants. Each of the guadrants is a
duplicate of the others only rotated in 90 degree increments.

Fach of the different shaft codes is located 22.5 degrees from
each other. There are only four different codes repeated four

times as the shaft is rotated the full 360 degrees.

The shaft encoder contains what appears to be two SPST
switches. One switch is connected between pin 1 and Pin 8
(Ground) . The second switch is connected between Pin 2 and Pin 8
(Ground). When the switches are open the logic state will be a
logic "1". When the switches are closed the logic state will be a

logic "0".

-119-

The shaft encoder is used more for determining rotation of
the knob rather than absolute positioning of the knob. The Gray
code allows the programmer to determine in which direction the
knob is being rotated by comparing the pfevious code from the
encoder to a new code. Since only one bit of data will change at
a time as the shaft is rotated, erroneous information about the
rotation of the shaft is eliminated. The software that interprets
the data from the shaft encoder can initialize on any position of
the shaft and give rotation resﬁlts as it reads the data from the

encoder.

The following table shows the 16 different positions as the
shaft is rotated both clockwise and counterclockwise. For this
example the starting position will have the data "00", however,
the starting data can be any of the four possible combinations.
The starting angle is assumed to be 0 degrees with clockwise
rotation being positive increments of angle of rotation. The data
shown at Pin 1 and Pin 2 is the logic state as it would be read by
the 6532 Port A at address $0280 on data bits DBO and DBl or on

data bits DB4 and DBS.

-120-

Clockwise Counterclockwise

- Rotation Angle Pin Pin Rotation Angle Pin Pin
In Degrees 1 2 In Degrees 1 2
0.0 0 0 6.0 0 0
+22.5 0 1 -22.5 1 0
+45.0 1 1 -45.0 1 1
+67.5 1 0 -67.5 0 1
+50.0 0 0 -90.0 0 0
+112.5 0 1 -112.5 1 0
+135.0 1 1 -135.0 1 1
+157.5 1 0 -157.5 0 1
+180.0 0 .0 -180.0 0 0
+202.5 0 1 -202.5 1 0

+225.0 1 1 -225.0 1 1
+247.é 1 0 : -247.5 0 1
+270.0 0 0 -270.0 0 0
+292.5 0 1 -292.5 1 0
+315.0 1 1 -315.0 1 1
+337.5 1 0 -337.5 0 1
+360.0 0 0 -360.0 0 0

-121-~

FRONT PANEL CONTROL SWITCHES

The Front Panel Control Switches consist of three SPST

switches and two normally open SPST momentary switches.

The two momentary switches are the "Game Select" and "Game
Reset" switches. These switches are connected between ground and
pins on Port B of the 6532. When these switches are in the normal
position the data is a logic "1". When each of thése switches are

depressed the logic state for each switch will be a logic "0".

The three other switches are the "TV Type", the "Left
Difficulty”, and the "Right Difficulty" switches. These switches
are also connected between ground and pins on Port B of the 6532.
When these switches are in the up position the data is a logic
"1". This is the "Color" position for the "TV Type" switch and
position "A" for the "Difficulty" switches. When these switches
are in the down position the logic state for each switch will be a
logic "0". This is the "B-W" position for the "TV Type" switch

and the "B" position for the "Difficulty" switches.

The connection locations for each of these switches is shown

in the following table:

-122~

Port B Switch

PBO "Game Reset"

PB1 "Game Select"

PBR2 » No Connection

PB3 "7y Type"

PB4 No Connection

PBS No Connection

PB6 "left Difficulty”
PB7 "Right Difficulty"

For more information about using the Front Panel Control

Switches see the description of the System I/O on page 106.

-123-

PROGRAMM ING

This Chapter deals with the basic programming requirements to
make a picture and eventually a game on the Atari Video Game

System.

A frame of a Video picture requires the following functions

be performed:

1. Vertical Blanking ON.

2. Perform Game Rule Proaram.
3. Vertical Sync ON.

4. Vertical Sync OFF.

5. Perform Game Rule Program.
6. Vertical Blanking OFF.

7. Display Video Picture.

Loop back to step 1.

There are certain timing requirements for each of the above
operations. Each frame must last exactly 262 lines of horizontal
scan in order to meet the NTSC Television timing requirements.
The NTSC Television standard translates to the following periods

specified in number of horizontal scan lines:

Vertical Blanking (Total) 21 lines
Vertical Blanking before Vertical Sync 3 lines
Vertical Sync 3 lines

-124-

Vertical Blanking after Vertical Sync 15 lines

video ON (Visible Picture) 241 lines

The above specifications are for standard video pictures
which includes overscan both above and pelow the visible area on
the television screen. In practice we modify the Blanking and
visible area line counts. However, the total number of lines must
remain 262. The normal maximum number of lines of visible area is
224 lines or less. Each of the lines removed from the visible
area is added to the Vertical Blanking either before, after or
both before and after the Vertical Sync. As the number of lines
of Vertical Blanking after Vertical Sync are increased, a black
area at the top of the screen will move further down from the
top. As the number of lines of Vertical Blanking before Vertical

Sync are increased, a black area at the bottom of the screen will

move further up from the bottom.

The Vertical Blanking Period must be an exact number of lines
with the Vertical Sync located during the Blanking period in
exactly the same location each and every frame. During the
Vertical Blanking Period the game rule programs and algorithms are
normally executed. It would be an excessive burden to.have these
programs also keep track of the number of lines being scanned
while executing, so we need an alternate method to count the
lines. Contained in the 6532 is an Interval Timer that can be
programmed to a time interval that is equal to the number of lines

to be counted.

-125-

The Interval Timer can be programmed to time various
intervals from 1 to 262,144 microprocessor clock cycles. The
Interval Timer has a pre-scaler that pre-divides the micro-
processor clock by 1, 8, 64, or 1024. The divided clock then
drives a counter that can be programmed from 1 to 256. The total
interval timed is the value of the pre-scaler multiplied by the

value programmed into the counter.

There are 76 microprocessors in each horizontal scan line.
The following table shows the number of microprocessor clock

cycles in various line counts for the Vertical Blanking Period.

These values are computed by multiplying the number of lines by 76

then subtracting 38 (half a iine period) then dividing by 8

(pre-scaler factor) and finally taking the integer value.

-126-

Line # MPU Clocks pre-Scaler Counter

1 76 8 4
2 152 8 14
3 228 8 23
4 304 8 33
5 380 8 42
6 456 8 52
7 1532 8 61
8 608 8 71
9 684 9 80
10 . 760 9 90
11 836 8 99
12 912 8 109
13 988 | 8 118
14 1064 8 128
15 1140 8 137
16 1216 8 147
17 1292 8 156
18 1368 8 166
19 1444 9 175
20 1520 8 185
21 1596 8 194
22 1672 8 204
23 1748 8 213
24 1824 8 223
25 1900 8 232

-127-

A program using the timer to count 15 lines would look like

the following:

STA $02

LDA #137
STA $0295

Perform program here.

LOOP LDA $0284

BNE LOOP

If we were using this

HSYNC

~e

15 line interval

~e

Start Timer

e

Read Timer Value

LY

Loop until Timer = 0

LY

program to do a Vertical Blanking

Period of 21 lines, the program would be as follows:

LDA #$02

STA $02
STA $01
LDA #194

STA $0295

Perform program here

LOOP LDA $0284
BNE LOOP
STA $02

STA $01

Data to turn on Blanking

~e

Other Data Bits may be set also

~e

; HSYNC

VBLNK Turn on Blanking

e

21 line interval

~e

Start Timer

~e

Read Timer Value

-

Loop until Timer = 0

“e

; HSYNC

VBLNK

-

This program does not account for the Vertical Sync that must
be inserted into the Vertical Blanking Period. 1In reality, if‘we
were doing the NTSC Standard Sync, the timer could be programmed
for 3 lines of Blanking, then 3 lines of Sync, then 15 more lines
of Blanking. The Blanking is not turned off during the Vertical
Sync and remains on for all of the 21 lines. For additional
information see the description of the Vertical Blanking ($01) on

page 48.

The program that executes the actual creation of the video
picture must also keep track of the number of lines being scanned
during the execution of the program to make sure that every frame

always has a total of 262 lines.

One of the biggest problems encountered in the generation of
the video picture is the horizontal placement of the Objects,
Projectiles, and the Border. ‘In the section, Horizontal Counter
Resets (page 57), the description of the Counter Resets describe
using CROBA, CROBB, CRPJA, CRPJB, and CRBDR to reset the counter
and therefore the location of each of these objects. These reset
commands can be exeéuted outside of the Horizontal Blanking in
order to place an object horizontally anywhere on the screen.
However, extreme care must be exercised to perform this object
placement. By using a subroutine that always executes the write
to the object during exactly the same microprocessor clock each

time, an object may be placed in the same location each time the

-129-

The following subroutine 1S suzh 4

Progran.

STaA $02 / HSYNC
Loop DEy
BPL, Loop
STa $001x P X ooy
Note this 1nstruction Cannot pe direc- e ‘Ommandg

Must pe done in the following Manner, PBUD
assembleyp will try to Convert STA $001x &, g <
Not want to do in thisg Program,

This Program is exactly timegd SO that the H ks
Register does g5 Course positlonlng of the res op
takeg 5 mlcroprocessor Clock Cycles or 1s VI Clock CYlles to loop
1 time, Each time y is decrement

the reset

-130-~

subroutine, we can execute the following program which will

position the object anywhere on the screen horizontally:

STA $02 HSYNC

~e

LOOP DEY
BPL LOOP

.BYT $8D, $1X, $00 : STA $001X Course Position

STA HMZZ2 : 2227 = Object, Projectile or Border
STA $02 s+ HSYNC

STA $2X ; X =0, 1, 2, 3, or 4

STA $2A ; HMENB Fine Position

RTS

This program only positions one object, so we can modify the
program to allow the flexibility of using the same program to
position any of the objects. By also passing a value in "X" to
determine which object we are positioning (*x* =10, 1, 2, 3, or 4)

we can use the following universal program:

STA $02 ; HSYNC

LOOP DEY
BPL LOOP

i STA $10,X : CROBA,X

STA $02 ; HSYNC
STA $20,X ; HMOBA,X 7
STA $2A ; HMENB rv ‘7 N
RTS

-131-

There are limitations to the values in "A", "Y", and "X".

@ horizontal motion "A" may not use the value #3$80, "Y" must be

in the range of

#$02 to #30C, and X must be 0, 1, 2, 3, or 4.

What we need now is a program to generate the value of "A" and

"Y"., The following subroutine is such a program in that you pass

a value in "A" to the program and it returns a value in "¥*" for

the course position of the object and a value in "A" for the fine

position of the
is in the range

locations.

CLC
ADC
TAY
AND

STA

LSR
LSR
LSR
LSR
TAY
CLC
ADC
CMP
BCC
SBC

INY

object. The initial value passed to the program

of 0 to 159 for one of the 160 possible horizontal

#32E

#$0F

TEMP

I S

TEMP
$#$0F
SB

$#30F

-132-

133~

Note:

SB

EOR #3$07
ASL A

ASL A
ASL A
ASL A

RTS

This program is from an Activision Game Program.

-133-

NOM
L}
CONNECTO . . 1 i
it MY Vau B4} —— » [
—4-Ja Ase) Y'Y Ag) ¥
Ab Ade ai}- ré
A4 ABO M L ‘L
N AN
(Y TRy vITY]
v ast ania e}
f ase 847 17 i teng Siex 1 !1 ‘ 1 (L 2X
LTI TTT) o s
oM s s - i 4 004
I8 o0 e 1e g Bl
VAALS 1 i
.§7
"o RF $nD.
o -
1} o o
Sa—— B
[ry
poeed [== L. v..\'-"! a4 40, I LW
' o bt ase my ' :“ ad
L] 3 AS4 OBl 36 * s rore
SUTELLR B s ane Ul S hey o bores
pof fmd {8 Ase XS e f::“ ::"'
. e a8i A/woe M R B
bt by 7 T A T N 9§ i Teas
=r . e 28 3 1 T Luee BT s
] } . o PAL B8l B4 o Ll ee s
M ! 080 ABe
M [] - sen
pi } I (PAB B3B8 b 0 GLAARS ABL B
{1 & P4 s ay hosd A82 % ‘Lu
T e os - Ass T
eras ooear L Ly oa AB4 2 .
"o § AT [PrET "0 AN Y
s 007 THE s} o By b J
T e A ANE - 0.4
harss Pum ' At : ::: - T
. B o .
‘? he P04 mu) ™= [1T
i 0 Yo ll-] .-.4:::.‘ o 4 wwe Wy AL
‘e e i
o L LI H
i} AN M
Aoy T Ada oot
controL S ween)
o e ABS see s *
-} 0 284 0
¢ [TR T T "
} D AT Ay
N Py (D 3 ABL] 18 {F____‘
I A7 g 4 M9 ABIOMN ot
- Py ® .
¥ T 0‘
&=
0
s | T -4
1 3
i fl’:‘\ L
t W S
t € © ﬁ,s?vi“‘ MG
I & @ [1)9
N @ " L34 7Y o0t
' ~
% e o i G
I & aTesss g
et
AA
20 Db 00
: ——— 'E 1oea woa 00 ~
L 1l 1 ' +
. v“. e ' T T :r Lo xs T -

A - ATARI TV GAME

. ‘ MAIN PC 90ARD s

v

(2.070 -
40 (2.040))
L AN NN/ MYEYAYAYRYaYmYm LAANNTNAM

(015
(.008

1

(.550)

(-530)) 625] (700)
; (.600)
I
i PIN No. |

i’ .‘/ [DENT
.] .
s J VD J W WY Y J W W W 2 W A Y W W W A o
20
(7C) ¥ -2
L:4;)if
(,060
(50 F | \NW (659
(125§ ; < PLASTIC PACKAGE
(.110) Fﬁoss) , o 023) |1
'J 090) (,L045) 032 TYP. (01 5)"'4 -

PACKAGE DRAWING AND PINOUT

V- {GND)
SYNC

RDY

LUM2
BLNK

LUMS

o
=
o
x
»
g

[Bl-fel [=] M [+ [7] [4] <] [7

2| SNDB

Wﬁ@@@ﬁﬁ

De3

o
3

DeS

v+ VCC

8l el [3]

POT A
POTB |

POTC |

HRBRGRE

POTD

TGR| {36
TGR2 [35
Dk7 [33]
Dbé [33]
280 [37]
ASi:EEj
g2 [30]
A3 [29] |
ag4 [2°]
ag= (27
ez [2¢]
W (25

o

REV, A
8/16/8]

